• 제목/요약/키워드: $H_2O$$_2$-induced cell injury

검색결과 104건 처리시간 0.029초

금불초 추출물의 항산화 효과 및 산화 스트레스에 대한 신경세포 보호작용 (Antioxidant Properties and Protective Effects of Inula britannica var. chinensis Regel on Oxidative Stress-induced Neuronal Cell Damage)

  • 이나현;홍정일;김진영;장매희
    • 한국식품과학회지
    • /
    • 제41권1호
    • /
    • pp.87-92
    • /
    • 2009
  • 본 연구에서는 금불초(Inula britannica) 추출물의 항산화 효과와 ${H_2}{O_2}$로부터 유도된 SH-SY5Y 신경모세포종의 세포독성에 대한 보호능을 측정하였다. 금불초 지상부위의 70% 메탄올 추출물에 대하여 용매별로 분획을 실시하였고 핵산(Fr.H), 에틸아세테이트(Fr.EA) 및 물(Fr.W) 분획에 대하여 활성을 조사하였다. 분획 중 Fr.W의 폴리페놀/플라보노이드 함량이 가장 높았으며 Fr.W의 총 폴리페놀 함량은 $318.1{\pm}20.6{\mu}g$/mg solid로, Fr.EA 및 Fr.H와 비교하여 각각 약 2.5배, 23.1배 수준이었다. DPPH radical, ABTS radical 및 nitric oxide 소거능 등의 항산화 활성에서도 Fr.W가 가장 높은 활성을 나타내었고 Fr.H는 거의 활성을 나타내지 않았다. Fr.W는 ${H_2}{O_2}$에 의해 유도된 세포사멸에 대하여 62.5 ${\mu}g$/mL 농도에서 현저하게 세포독성을 감소시켰으며 250 ${\mu}g$/mL에서는 77.0%의 세포사멸 억제능을 보였다. Fr.EA는 보호 효과를 나타 내지 않았으며 Fr.H는 오히려 ${H_2}{O_2}$로 인한 세포 독성을 증가시키는 것으로 나타났다. 세포 내 ROS에 대한 영향으로 Fr.W 250 ${\mu}g$/mL 처리시 39.2% 세포내 ROS를 감소시켰으며 Fr.EA는 25 ${\mu}g$/mL에서 26.8%의 세포내 ROS를 소거하였다. 이러한 금불초 Fr.W의 항산화 활성은 ROS에 의해 야기되는 뇌세포 독성에 대한 보호 작용에 공헌할 수 있을 것으로 예상된다.

Protective Effect of Propofol against Hypoxia-reoxygenation Injury in HaCaT Human Keratinocytes

  • Kim, Yong-Ho;Kang, Jin-Mo;Kim, In-Ryoung;Lee, Bo-Young;Yoon, Ji-Young;Kim, Cheul-Hong;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제39권2호
    • /
    • pp.97-105
    • /
    • 2014
  • The aim of this study was to determine the beneficial effect of propofol on human keratinocytes that have undergone hypoxia reoxygenation (H/R) injury and to investigate whether autophagy is associated with the protective mechanism. Thus, we evaluated how propofol influences the intracellular autophagy and apoptosis during the H/R process in the HaCaT cells. The cultured human keratinocyte cells were exposed to 24 h of hypoxia (5% $CO_2$, 1% $O_2$, 94% $N_2$) followed by 12 h of reoxygenation (5% $CO_2$, 21% $O_2$, 74% $N_2$). The experiment was divided into 4 groups: (1) Control=Normoxia ; (2) H/R=Hypoxia Reoxygenation ; (3) PPC+H/R=Propofol Preconditioning+Hypoxia Reoxygenation; (4) 3-MA+PPC+ H/R=3-MA-Methyladenine+Propofol Preconditioning+ Hypoxia Reoxygenation. In addition, Western blot analysis was performed to identify the expression of apoptotic pathway parameters, including Bcl-2, Bax, and caspase 3 involved in mitochondrial-dependent pathway. Autophagy was determined by fluorescence microscopy, MDC staining, AO staining, and western blot. The H/R produced dramatic injuries in keratinocyte cells. In our study, the viability of Propofol in H/R induced HaCaT cells was first studied by MTT assay. The treatment with 25, 50, and $100{\mu}M$ Propofol in H/R induced HaCaT cells enhanced cell viability in a dose-dependent manner and $100{\mu}M$ was the most effective dose. The Atg5, Becline-1, LC3-II, and p62 were elevated in PPC group cells, but H/R-induced group showed significant reduction in HaCaT cells. The Atg5 were increased when autophagy was induced by Propofol, and they were decreased when autophagy was suppressed by 3-MA. These data provided evidence that propofol preconditioning induced autophagy and reduced apoptotic cell death in an H/R model of HaCaT cells, which was in agreement with autophagy playing a very important role in cell protection.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.

산화적 스트레스에 의한 간세포의 DNA 손상 및 apoptosis 유도에 대한 노근 추출물의 보호 효과 (Protective Effect of Phragmitis Rhizoma against Oxidative Stress-induced DNA Damage and Apoptosis in Chang Liver Cells)

  • 이희영;홍상훈;박상은
    • 대한한방내과학회지
    • /
    • 제42권6호
    • /
    • pp.1269-1284
    • /
    • 2021
  • Objectives: Phragmitis Rhizoma is the fresh or dried rhizome of Phragmites communis Trin., which has been prescribed in traditional Korean medicine to relieve fever and vomiting and to nourish the body fluids. Recently, the protective effect of Phragmitis Rhizoma extract or its components on myelotoxicity and inflammatory responses have been reported, but no study has yet been conducted on oxidative stress. Methods: The present study investigated whether an ethanol extract of Phragmitis Rhizoma (PR) could protect against cellular damage induced by oxidative stress in Chang liver cells. Results: Pretreatment with PR significantly suppressed the hydrogen peroxide (H2O2)-induced reduction of Chang cell viability and generation of reactive oxygen species (ROS), thereby deferring apoptosis. PR also markedly inhibited H2O2-induced comet tail formation and phospho-γH2AX expression, suggesting that PR protected against oxidative stress-mediated DNA damage. PR also effectively prevented the inhibition of ATP synthesis in H2O2-treated Chang cells by inhibiting the loss of mitochondrial membrane potential, indicating that PR maintains energy metabolism through preservation of mitochondrial function while eliminating ROS generated by H2O2. Immunoblotting results indicated that PR attenuated the H2O2-induced downregulation of Bcl-2 and upregulation of Bax expression. Conclusions: PR protects against oxidative injury in Chang liver cells by regulating energy homeostasis via ROS generation blockade, which is at least partly mediated through inactivation of the mitochondria-mediated apoptosis pathway.

곡아지실소시호탕(穀芽枳實小柴胡湯)의 간보호작용(肝保護作用)에 관(關)한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Hepatoprotective Effect of Gokajisilsosiho-Tang)

  • 김영진;강대근;이재익;김강산;강병기;전영세
    • 대한한방내과학회지
    • /
    • 제21권2호
    • /
    • pp.299-308
    • /
    • 2000
  • This study was performed to elucidate the effects of Gokajisilsosiho-Tang(GJST) on the lactic dehydrogenase(LDH) release, cell viability and activity, lipid peroxidation, DNA synthesis and the changes of total protein synthesis and GSH changes in vivo and in vitro in rat cultured hepatocytes from hydrogen peroxide$(H_2O_2)$-induced injury. The GJST extract had not an effect on cytotoxicity in all experimental results. The treatment of GJST extract of $160{\mu}g/ml$, $320{\mu}g/ml$ showed the significant effect to decrease LDH leakage induced by t-BHP in cultured rat hepatocytes. The higher concentration of GJST extract than $160{\mu}g/ml$, showed the inhibitory effect on decreasing cell viability induced by t-BHP. The treatment of t-BHP to rat cultured hepatocytes resulted in a concentration dependent increase in TBARS, in the presence of GJST extract the production of TBARS induced by hydrogen peroxide was inhibited concentration dependently, significantly inhibited at $80{\mu}g/ml$ of GJST extract and above. The GJST extract simutaneously present with t-BHP prevented the loss of total protein and GSH in a concentration dependent manner. These results suggested that GJST extract may play a hepatoprotective role in oxidative damage induced by hydrogen peroxide and a therapeutic potential of inhibiting liver injury.

  • PDF

간세포(肝細胞)의 산화적 손상에 대한 백화사설초(白花蛇舌草)의 항산화효과 (The Anti-Oxidative Effects of Oldenlandiae Diffusae Herba Extract on Oxidative Hepatic Injury)

  • 김형환;이채중;박철수;김미랑;김종대;문진영;안중환
    • 대한한방내과학회지
    • /
    • 제23권1호
    • /
    • pp.57-64
    • /
    • 2002
  • Objective : This study was designed to investigate the anti-oxidative effects of Oldenlandiae Diffusae Herba Water extract (ODHW) on lipid peroxidation by free radicals oxidative hepatic injury. Methods : In order to evaluate anti-oxidative activities of ODHW in the liver cell, cultured normal rat liver cells(Ac2F) were incubated with or without ODHW. After 16 hours to 18 hours of experiment, cells were placed in DMEM medium without serum, and then incubated with 1mM tert-butyl hydro-peroxide(t-BHP) for two hours. Viable cells were detected by MTT assay. The levels of LPO induced by hydroxyl radical derived from H2O2-Fe2+ system in rat liver homogenate were determined by means of TBA. Inhibitory effect of ODHW on superoxide generation was measured by xanthine-xanthine oxidase system. Results : In the linoleic acid autoxidation system, ODHW exhibited antioxidant activity, which inhibited 85% of linoleic acid peroxidation. These effects were similar to those of dl-a-tocopherol. ODHW showed scavenging effects on DPPH radical, inhibited superoxide generation in xanthine-xanthine oxidase system, and also inhibited lipid peroxidation of rat liver tissue with hydroxyl radical derived from $H_2O_2-Fe^{2+}$ system. In addition, ODHW protected the cell death induced by t-BHP and it significantly increased cell viability in a normal rat liver cell(Ac2F)

  • PDF

6'-O-Galloylpaeoniflorin Protects Human Keratinocytes Against Oxidative Stress-Induced Cell Damage

  • Yao, Cheng Wen;Piao, Mei Jing;Kim, Ki Cheon;Zheng, Jian;Cha, Ji Won;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.349-357
    • /
    • 2013
  • 6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide ($H_2O_2$)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, $H_2O_2$-generated intracellular reactive oxygen species (ROS), the superoxide anion radical ($O_2^-$), and the hydroxyl radical (${\cdot}$OH). GPF also safeguarded HaCaT keratinocytes against $H_2O_2$-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.

Protective effects of remifentanil against H2O2-induced oxidative stress in human osteoblasts

  • Yoon, Ji-Young;Kim, Do-Wan;Kim, Eun-Jung;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Hyung-Joon;Park, Jeong-Hoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제16권4호
    • /
    • pp.263-271
    • /
    • 2016
  • Background: Bone injury is common in many clinical situations, such as surgery or trauma. During surgery, excessive reactive oxygen species (ROS) production decreases the quality and quantity of osteoblasts. Remifentanil decreases ROS production, reducing oxidative stress and the inflammatory response. We investigated remifentanil's protective effects against $H_2O_2$-induced oxidative stress in osteoblasts. Methods: To investigate the effect of remifentanil on human fetal osteoblast (hFOB) cells, the cells were incubated with 1 ng/ml of remifentanil for 2 h before exposure to $H_2O_2$. For induction of oxidative stress, hFOB cells were then treated with $200{\mu}M$ $H_2O_2$ for 2 h. To evaluate the effect on autophagy, a separate group of cells were incubated with 1 mM 3-methyladenine (3-MA) before treatment with remifentanil and $H_2O_2$. Cell viability and apoptotic cell death were determined via MTT assay and Hoechst staining, respectively. Mineralized matrix formation was visualized using alizarin red S staining. Western blot analysis was used to determine the expression levels of bone-related genes. Results: Cell viability and mineralized matrix formation increased on remifentanil pretreatment before exposure to $H_2O_2$-induced oxidative stress. As determined via western blot analysis, remifentanil pretreatment increased the expression of bone-related genes (Col I, BMP-2, osterix, and $TGF-{\beta}$). However, pretreatment with 3-MA before exposure to remifentanil and $H_2O_2$ inhibited remifentanil's protective effects on hFOB cells during oxidative stress. Conclusions: We showed that remifentanil prevents oxidative damage in hFOB cells via a mechanism that may be highly related to autophagy. Further clinical studies are required to investigate its potential as a therapeutic agent.

혈관내피세포의 세포사멸작용에 대한 (-)Epigallocatechin Gallate의 억제효과 (Inhibitory Effects of Epigallocatechin Gallate on Apoptosis in Human Vascular Endothelial Cells)

  • 최연정;최정숙;이세희;이용진;강정숙;강영희
    • 한국식품영양과학회지
    • /
    • 제31권4호
    • /
    • pp.672-678
    • /
    • 2002
  • 본 연구에서는 free radicals의 산화적인 손상에 의한 세포사멸에 있어서 녹차성분의 하나인 (-)epigallocatechin gallate의 억제효과를 규명하였다. 우선 radicals 소거작용에 있어서 (-)epigallocatechin gallate는 탁월한 항산화력을 발휘하였다. 혈관손상과 직결되는 혈관내피세포를 이용하여 hydroxyl radical의 $H_2O$$_2$에 의한 산화적인 손상을 유발시켜 세포생존율을 조사하였는데, (-)epigallocatechin gallate는 100 $\mu\textrm{m}$ 이하의 농도에서는 그 자체 독성이 없었고 $H_2O$$_2$의 산화적 독성효과를 경감시키는 것으로 나타났다. 그러나 flavone인 apigenin은 고농도에서 독성을 가지며 radical 소거활성이 미약하고 $H_2O$$_2$의 산화독성은 경감시키지 못하였다. 다양한 세포사멸 검출법을 이용하여 세포 및 세포핵의 형태학적 양상을 조사한 결과, 0.25mM $H_2O$$_2$에 의한 24시간 이내의 세포죽음은 세포사멸현상에 의하여 초래되었다. 그러나 이러한 세포사멸과정을 겪고 있는 혈관내피세포에 50 $\mu\textrm{m}$ (-)epigallocatechin gallate를 처리한 경우에 세포핵의 응축이나 DNA fragmentation은 사라지고 세포사멸작용을 억제시키는 효과를 보여주었다. 예상한 바와 같이 apigenin의 flavone은 세포사멸 억제효과를 나타내지 못하였다. (-)Epigallocatechin gallate는 녹차에 함유된 catechins의 하나로서 free radicals의 산화적 손상에 의한 세포사멸에 있어서 탁월한 방어적 인 세포생리학적인 기능을 지니고 있으며, 혈관노화 및 혈관손상과 함께 유발되는 세포사멸성 심혈관질환의 예방과 치료에 기능성 식품 신소재로서 활용될 수 있으리라 본다.

KR 31378, a Potent Antioxidant, Inhibits Apoptotic Death of A7r5 Cells

  • Kim, Ki-Young;Kim, Byeong-Gee;Kim, Sun-Ok;Yoo, Sung-Eun;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권5호
    • /
    • pp.381-388
    • /
    • 2001
  • This work describes the pharmacological inhibition by KR 31378 and its acetyl metabolite, KR 31612, of the apoptotic cell death induced by $H_2O_2$ in the A7r5 cells. Exposure of A7r5 cells to $H_2O_2$ (0.5 mM) induced a concentration-dependent cytotoxicity in association with oligonucleosomal DNA fragmentation. $H_2O_2-induced$ cell death was potently suppressed by KR 31378, KR 31612, ${\alpha}-tocopherol$ or trolox. Additionally, the apoptotic death of A7r5 cells (DNA ladders on electrophoresis) was also strongly suppressed by KR 31378 and KR 31612, but to a less degree by ${\alpha}-tocopherol$ and trolox. As a mechanistic study, incubation with $H_2O_2$ markedly showed a decreased Bcl-2 level and, in contrast, increased Bax protein and cytochrome C release, which were significantly and concentration-dependently reversed by KR 31378 and KR 31612 as well as by ${\alpha}-tocopherol$ and trolox. KR 31378 and ${\alpha}-tocopherol$ significantly reduced lipid peroxidation in accordance with reduced intracellular ROS and peroxyl radical. These results suggest that KR 31378 has a therapeutic potential against the apoptotic injury via mediation of anti- oxidative stress.

  • PDF