References
- Masi L, Brandi ML. Physiopathological basis of bone turnover. Q J Nucl Med 2001; 45: 2-6.
- Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 2011; 377: 1276-87. https://doi.org/10.1016/S0140-6736(10)62349-5
- Seeman E. Invited Review: Pathogenesis of osteoporosis. J Appl Physiol 2003; 95: 2142-51. https://doi.org/10.1152/japplphysiol.00564.2003
- Polzer K, Joosten L, Gasser J, Distler JH, Ruiz G, Baum W, et al. Interleukin-1 is essential for systemic inflammatory bone loss. Ann Rheum Dis 2010; 69: 284-90. https://doi.org/10.1136/ard.2008.104786
- Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, et al. Protective actions of green tea polyphenols and alfacalcidol on bone microstructure in female rats with chronic inflammation. J Nutr Biochem 2011; 22: 673-80. https://doi.org/10.1016/j.jnutbio.2010.05.007
- Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y. Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 2007; 59: 27-33. https://doi.org/10.1080/15216540601156188
- Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001; 31: 509-19. https://doi.org/10.1016/S0891-5849(01)00610-4
- Gasbarrini A, Grigolo B, Serra M, Baldini N, Scotlandi K, Gasbarrini A, et al. Generation of free radicals during anoxia and reoxygenation in perfused osteoblastlike cells. Clin Orthop Relat Res 1997; 338: 247-52. https://doi.org/10.1097/00003086-199705000-00033
- Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 1999; 300: 219-26.
- Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24: 981-90. https://doi.org/10.1016/j.cellsig.2012.01.008
- Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069-75. https://doi.org/10.1038/nature06639
- Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 2015; 22: 377-88. https://doi.org/10.1038/cdd.2014.150
- Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR. Under the ROS: Thiol network is the principal suspect for autophagy commitment. Autophagy 2010; 6: 999-1005. https://doi.org/10.4161/auto.6.7.12754
- Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1-13. https://doi.org/10.1042/BJ20081386
- Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007; 14: 146-57. https://doi.org/10.1038/sj.cdd.4401936
- Komatsu R, Turan AM, Orhan-Sungur M, McGuire J, Radke OC, Apfel CC. Remifentanil for general anaesthesia: a systematic review. Anaesthesia 2007; 62: 1266-80. https://doi.org/10.1111/j.1365-2044.2007.05221.x
- Yang LQ, Tao KM, Liu YT, Cheung CW, Irwin MG, Wong GT, et al. Remifentanil preconditioning reduces hepatic ischemia-reperfusion injury in rats via inducible nitric oxide synthase expression. Anesthesiology 2011; 114: 1036-47. https://doi.org/10.1097/ALN.0b013e3182104956
- Zongze Z, Jia Z, Chang C, Kai C, Yanlin W. Protective effects of remifentanil on septic mice. Mol Biol Rep 2010; 37: 2803-8. https://doi.org/10.1007/s11033-009-9828-4
- Baik SW, Park BS, Kim YH, Kim YD, Kim CH, Yoon JY, et al. Effects of Remifentanil Preconditioning on Osteoblasts under Hypoxia-Reoxygenation Condition. Int J Med Sci 2015; 12: 583-9. https://doi.org/10.7150/ijms.11839
- Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science 1988; 240: 1302-9. https://doi.org/10.1126/science.3287616
- Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003; 17: 1195-214. https://doi.org/10.1096/fj.02-0752rev
- Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL, et al. Hydroxyl radicals and DNA base damage. Mutat Res 1999; 424: 9-21. https://doi.org/10.1016/S0027-5107(99)00004-4
- Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239-47. https://doi.org/10.1038/35041687
- Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004; 314: 197-207. https://doi.org/10.1016/j.bbrc.2003.12.073
- Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 2010; 87: 226-35. https://doi.org/10.1007/s00223-010-9393-9
- Li X, Cao X. BMP signaling and skeletogenesis. Ann N Y Acad Sci 2006; 1068: 26-40. https://doi.org/10.1196/annals.1346.006
- Kanonidou Z, Karystianou G. Anesthesia for the elderly. Hippokratia 2007; 11: 175-7.
- Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002; 359: 1761-7. https://doi.org/10.1016/S0140-6736(02)08657-9
- Pavlin D, Zadro R, Gluhak-Heinrich J. Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early responses of osteocalcin and type I collagen. Connect Tissue Res 2001; 42: 135-48. https://doi.org/10.3109/03008200109014255
- Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin- deficient mice. Nature 1996; 382: 448-52. https://doi.org/10.1038/382448a0
- Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin- deficient mice. Nature 1996; 382: 448-52. https://doi.org/10.1038/382448a0
- Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004; 22: 233-41. https://doi.org/10.1080/08977190412331279890
- Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ 2009; 16: 264-77. https://doi.org/10.1038/cdd.2008.151
- Gozuacik D, Kimchi A. Autophagy and cell death. Curr Top Dev Biol 2007; 78: 217-45.
Cited by
- Effect of remifentanil on pre-osteoclast cell differentiation in vitro vol.18, pp.1, 2016, https://doi.org/10.17245/jdapm.2018.18.1.9
- Remifentanil promotes osteoblastogenesis by upregulating Runx2/osterix expression in preosteoblastic C2C12 cells vol.19, pp.2, 2019, https://doi.org/10.17245/jdapm.2019.19.2.91
- Remifentanil inhibits the traumatic stress response in emergent trauma surgery vol.33, pp.8, 2016, https://doi.org/10.1002/jcla.22971
- The Effect of Opiates on Bone Formation and Bone Healing vol.18, pp.3, 2016, https://doi.org/10.1007/s11914-020-00585-4
- Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty vol.108, pp.5, 2016, https://doi.org/10.1002/jbm.b.34546
- Remifentanil preconditioning protects against hypoxia-induced senescence and necroptosis in human cardiac myocytes in vitro vol.12, pp.14, 2016, https://doi.org/10.18632/aging.103604
- Surgery start time and early implant failure: A case–control study vol.32, pp.7, 2016, https://doi.org/10.1111/clr.13763