• 제목/요약/키워드: $H_2-O_2$ recombination

검색결과 75건 처리시간 0.024초

산화적 스트레스에 대한 Bacillus subtilis의 thiol peroxidase 유전자의 생리적인 기능 (Physiological Roles of Bacillus subtilis thiol peroxidase gene in response to oxidative stress)

  • 김하근;김성진
    • 자연과학논문집
    • /
    • 제15권1호
    • /
    • pp.57-67
    • /
    • 2005
  • 산화적 스트레스에 대한 Bacillus subtilis의 thiol peroxidase 유전자의 생리적인 기능을 연구하기 위해 thiol peroxidase 유전자의 기능이 손상된 녹아웃 돌연변이주를 상동성 재조합에 의해 제조하였다. 호기적 조건에서 배양할 때 야생형과 녹아웃 돌연변이주 사이에는 성장속도에서 차이를 관찰할 수 없었다. 그러나 paraquat 처리할 때와는 달리 $H_2O_2$와 cumene hydroperoxide (CHP)에 의한 산화적 스트레스에 대해 역할을 하고 있음을 시사하는 결과이다.

  • PDF

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF

Synthesis of Nanoporous Structured SnO2 and its Photocatalytic Ability for Bisphenol A Destruction

  • Kim, Ji-Eun;Lee, Jun-Sung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1715-1720
    • /
    • 2011
  • Nanoporous structured tin dioxide ($SnO_2$) is characterized and its application in the photocatalytic destruction of endocrine, Bisphenol A, is examined. Transmission electron microscopy (TEM) reveals irregularly shaped nanopores of size 2.0-4.5 nm. This corresponds to the result of an average nanopore distribution of 4.5 nm, as determined by Barret-Joyner-Halenda (BJH) plot from the isotherm curve. The photoluminescence (PL) curve, corresponding to the recombination between electron and hole, largely decreases in the $TiO_2$/nanoporous $SnO_2$ composite. Finally, a synergy effect between $TiO_2$ and porous $SnO_2$ is exhibited in photocatalysis: the photocatalytic destruction of Bisphenol A is improved by combining the nanoporous structured $SnO_2$ with $TiO_2$, and 75% decomposition of 10.0 ppm of Bisphenol A is achieved after 24 h.

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin;Tonda, Surendar;Jo, Wan-Kuen
    • 한국환경과학회지
    • /
    • 제30권1호
    • /
    • pp.57-67
    • /
    • 2021
  • Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

P-i-n 페로브스카이트 태양전지 응용을 위한 2PACz을 이용한 NiO의 개질 (Modification of NiO Using 2PACz for P-i-n Perovskite Solar Cells)

  • 이선민;김석순
    • 공업화학
    • /
    • 제35권2호
    • /
    • pp.100-106
    • /
    • 2024
  • NiO와 페로브스카이트 사이의 전하 이동과 계면특성을 개선하기 위해, 솔-젤로 제조된 NiO를 [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz)으로 개질한다. 2PACz의 인산기(head group)는 NiO 표면의 수산화기(-OH)와 응축 반응을 통해 결합되며, 더 깊은 가전자대가 형성되면서 페로브스카이트 층의 가전자대와 에너지밴드가 더 잘 일치하게 되어 생성된 전하의 재결합이 억제되고 에너지 손실이 감소하게 된다. 더불어, 페로브스카이트의 표면 및 페로브스카이트/정공 전달층 계면에 핀홀이 없는 고질의 페로브스카이트 필름이 형성된다. 결과적으로, 13.69%의 효율을 나타내는 NiO 기반 소자와 비교했을 때, 최적의 2PACz으로 개질된 NiO 기반 소자는 17.08%의 높은 효율을 보여주며, 공기 조건에서 더 뛰어난 안정성을 보여준다.

그래핀 옥사이드와 이산화티타늄 조합을 이용한 이산화탄소의 광환원 (Photoreduction of Carbon Dioxide using Graphene Oxide-Titanium Oxide Composite)

  • 이명규;장준원;박성직;박재우
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.46-51
    • /
    • 2016
  • In this study, we synthesized a combination of graphene oxide (GO) and titanium dioxide (TiO2) and confirm that GO can be used for CO2 photoreduction. TiO2 exhibited highly efficient combination with other conventional electric charges generated by these paration phenomenon for suppression of hole-electron recombination. This improved the efficiency of CO2 photoreduction. The synthetic form of GO-TiO2 used in this study was agraphene sheet surrounded by TiO2 powder. Efficiency and stability were enhanced by combination of GO and TiO2. In a CO2 photoreduction experiment, the highest CO conversion rate was 0.652 μmol/g·h in GO10-TiO2 (2.3-fold that of pure TiO2) and the highest CH4 production rate was 0.037 μmol/g·h in GO0.1-TiO2 (2.4-fold that of pure TiO2). GO enhances photocatalytic efficiency by functioning as a support and absorbent, and enabling charge separation. With increasing GO concentration, the CH4 level decreases to~45% due to decreased transfer of electrons. In this study, TiO2 together with GO yielded a different result than the normal doping effect and selective CO2 photoreduction.

열플라즈마에 의한 CFC의 분해공정 (Decomposition Process of CFC by Thermal Plasma)

  • 차우병;최경수;박동화
    • 공업화학
    • /
    • 제9권6호
    • /
    • pp.829-834
    • /
    • 1998
  • 환경문제와 관련하여 오존층 파괴의 주요 원인으로 알려진 CFC를 열플라즈마를 이용하여 완전하게 분해하였다. CFC113($C_2Cl_3F_3$)을 선정하여 열플라즈마 분해에서의 적절한 공정 조건을 검토하였다. 실험에 앞서, 상압에서 300 K~5000 K범위에서 CFC113, $H_2$, $O_2$간의 열역학적 화학평형조성을 고찰함으로써 CFC113의 분해 생성의 경향을 알 수 있었다. 실험은 상압, 상온에서 CFC113과 $H_2$, $O_2$혼합가스의 주입량, 그리고 냉각관 직경의 변화에 따른 분해생성물을 조사하였고 이를 기체크로마토그래피로 분석하였다. 그 결과, 각각 99.99%이상의 분해율을 보였다. CFC113/$H_2$=1/3에서 $O_2$비가 증가할수록 CO로의 전화율은 감소하였다. CFC113/$O_2$=1/1, 1/1.5, 1/2에서 $H_2$비가 3이상 증가될수록 CO로의 전화율이 증가하였다. 그 이유는 $H_2$첨가가 증가할수록 환원분위기에서 $H_2O$가 생성되고 $CO_2$생성량이 감소하기 때문이다. DC power가 증가하여도 CO로의 전화율 변화는 차이가 없었으며, 총유량이 증가할 경우 CO전화율이 약간 감소하는 경향을 보였다. 냉각관의 직경을 8 mm에서 4 mm로 작게 할 경우 빠른 냉각속도로 인하여 CO로의 전화율이 증가하였다.

  • PDF

Zno/nip-SiC:H/금속기판 구조 비정질 실리콘 태양전지의 후면 ZnO 및 완충층 삽입 효과에 대한 컴퓨터 수치해석 (Computer simulation for the effects of inserting the textured ZnO and buffer layer in the rear side of ZnO/nip-SiC: H/metal type amorphous silicon solar cells)

  • 장재훈;임광수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1277-1279
    • /
    • 1994
  • In the structure of ZnO/nip-SiC: H/metal substrate amorphous silicon (a-Si:H) solar cells, the effects of inserting a rear textured ZnO in the p-SiC:H/metal interface and a graded bandgap buffer layer in the i/p-SiC:H have been analysed by computer simulation. The incident light was taken to have an intensity of $100mW/cm^2$(AM-1). The thickness of the a-Si:H n, ${\delta}$-doped a-SiC:H p, and buffer layers was assumed to be $200{\AA},\;66{\AA}$, and $80{\AA}$, respectively. The scattering coefficients of the front and back ZnO were taken to be 0.2 and 0.7, respectively. Inserting the rear buffer layer significantly increases the open circuit voltage($V_{oc}$) due to reduction of the i/p interface recombination rate. The use of textured ZnO markedly improves collection efficiency in the long wavelengths( above ${\sim}550nm$ ) by back scattering and light confinement effects, resulting in dramatic enhancement of the short circuit current density($J_{sc}$). By using the rear buffer and textured ZnO, the i-layer thickness of the ceil for obtaining the maximum efficiency becomes thinner(${\sim}2500{\AA}$). From these results, it is concluded that the use of textured ZnO and buffer layer at the backside of the ceil is very effective for enhancing the conversion efficiency and reducing the degradation of a-Si:H pin-type solar cells.

  • PDF

균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가 (Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation)

  • 황두선;이남희;이희균;김선재
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.293-299
    • /
    • 2004
  • Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

Global Warming Gas Emission during Plasma Cleaning Process of Silicon Nitride Using C-C$_4$F$_8$O Feed Gas with Additive $N_2$

  • Kim, K.J.;Oh, C.H.;Lee, N.-E.;Kim, J.H.;Bae, J.W.;Yeom, G.Y.;Yoon, S.S.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.403-408
    • /
    • 2001
  • In this work, the cyclic perfluorinated ether (c-C$_4$F$_{8}$O) with very high destructive removal efficiency (DRE) than other alternative gases, such as $C_3$F$_{8}$, c-C$_4$F$_{8}$ and NF$_3$ was used as an alternative process chemical. The plasma cleaning of silicon nitride using gas mixtures of c-C$_4$F$_{8}$O/O$_2$ and c-C$_4$F$_{8}$O/O$_2$+ $N_2$ was investigated in order to evaluate the effects of adding $N_2$ to c-C$_4$F$_{8}$O/O$_2$ on the global warming effects. Under optimum condition, the emitted net perfluorocompounds (PFCs) during cleaning of silicon nitride were quantified and then the effects of additive $N_2$ by obtaining the destructive removal efficiency (DRE) and the million metric tons of carbon equivalent (MMT-CE) were calculated. DRE and MMTCE were obtained by evaluating the volumetric emission using. Fourier transform-infrared spectroscopy (FT-IR). During the cleaning using c-C$_4$F$_{8}$O/O$_2$+$N_2$, DRE values as high as (equation omitted) 98% were obtained and MMTCE values were reduced by as high as 70% compared to the case of $C_2$F$_{6}$O$_2$. Recombination characteristics were indirectly investigated by combining the measurements of species in the chamber using optical emission spectroscopy (OES), before and after the cleaning, in order to understand any correlation between plasma and emission characteristics as well as cleaning rate of silicon nitride.silicon nitride.

  • PDF