• Title/Summary/Keyword: $H_2$ Production

Search Result 8,649, Processing Time 0.035 seconds

Hydrogen Gas Production from Biogas Reforming using Plasmatron (플라즈마트론을 이용한 바이오가스 개질로부터 수소생산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.528-534
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal operating condition for the hydrogen production by biogas reforming using the plasmatron induced thermal plasma. The component ratio of biogas($CH_4/CO_2$) produced by anaerobic digestion reactor were 1.03, 1.28, 2.12, respectively. And the reforming experiment was performed. To improve hydrogen production and methane conversion rates, parametric screening studies were conducted, in which there are the variations of biogas flow ratio(biogas/TFR: total flow rate), vapor flow ratio($H_2O/TFR$: total flow rate) and input power. When the variations of biogas flow ratio, vapor flow ratio and input power were 0.32~0.37, 0.36~0.42, and 8 kW, respectively, the methance conversion reached its optimal operating condition, or 81.3~89.6%. Under the condition mentioned above, the wet basis concentrations of the synthetic gas were H2 27.11~40.23%, CO 14.31~18.61%. The hydrogen yield and the conversion rate of energy were 40.6~61%, 30.5~54.4%, respectively, the ratio of hydrogen to carbon monoxide($H_2/CO$) was 1.89~2.16.

Economic Evaluation of Domestic Low-Temperature Water Electrolysis Hydrogen Production (국내 저온수전해 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook;Ko, Hyun-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.559-567
    • /
    • 2011
  • This paper deals with an economic evaluation of domestic low-temperature water electrolysis hydrogen production. We evaluate the economic feasibility of on-site hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ by the alkaline and the polymer electrolyte membrane water electrolysis. The hydrogen production prices of the alkaline water electrolysis, the polymer electrolyte membrane water electrolysis, and the steam methane reforming hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ were estimated as 18,403 $won/kgH_2$, 22,945 $won/kgH_2$, 21,412 $won/kgH_2$, respectively. Domestic alkaline water electrolysis hydrogen production is evaluated as economical for small on-site hydrogen fueling stations, and we need to further study the economic evaluation of low-temperature water electrolysis hydrogen production for medium and large scale on-site hydrogen fueling stations.

Conditions for Soluble Phosphate Production by Environment-Friendly Biofertilizer Resources, Pseudomonas fluorescens (환경친화적 미생물비료 자원 Pseudomonas fluorescens RAF15에 의한 가용성 인산 생산에 영향을 미치는 조건)

  • Park, Ki-Hyun;Park, Geun-Tae;Kim, Sung-Man;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1033-1037
    • /
    • 2008
  • The effects of inorganic salts, inoculum concentration, aeration rate and shaking speed on insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 were investigated. Soluble phosphate production was dependent on the presence of $MgCl_2{\cdot}6H_2O$ and $MgSO_4{\cdot}7H_2O$ in the medium. Supplementation of medium with 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl slightly increased soluble phosphate production. The optimal medium compositions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% glucose, 0.005% urea, 0.3% $MgCl_2{\cdot}6H_2O$, 0.01% $MgSO_4{\cdot}7H_2O$, 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl, respectively. Optimal inoculum concentration was 2.0%(v/v). Maximum soluble phosphate production was obtained with 20-50 ml/250-ml flask and 200 rpm of shaking speed, respectively. The addition of EDTA decreased cell growth and soluble phosphate production.

방선균의 xylB 변이주에 의한 포도당 이성화효소의 생산

  • 주길재;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 1997
  • Streptomyces chibaensis J-59 did not grow in the culture medium containing only xylose or xylan as a carbon source, because it was defective in xylulokinase production; xylB mutant. S. chibaensis J-59 was able to produce xylanase and $\beta $-xylosidase as well as glucose isomerase. The glucose isomerase in S. chilbaensis J-59 was induced in the medium containing xylan or xylose which could be utilized as an inducer but not sa carbon and energy sources. So we tried to produce glucose isomerase whthout consumption of xylose or xylan as an inducer by using xylB mutant S. chilbaensis J-59. The optimum condition for the production of the glucose isomerase was attained in a culture medium composed of 1% xylan, 0.15% glucose, 1.5% corn steep liquor, 0.1% MaSO$_{4}$ $\CDOT $7H$_{2}$O, and 0.012% CoCL$_{2}$ $\CDOT $ 6H$_{2}$O(pH 7.0). The production of the enzyme reached to a maximum level when the bacteria were cultured for 42 h at 30$\circ $C. The enzyme production in a jar fermentor was increased twice as much as that in a flask culture.

  • PDF

Optimization of Xylitol Production by Candida tropicalis in Two-stage Fed-batch Culture (Candida tropicalis의 2단계 유가식 배양에 의한 Xylitol 생산의 최적화)

  • 유연우;조영일;서진호
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.93-99
    • /
    • 2002
  • Two-stage fed-batch culture of Candide tropicalis that was designated primarily to cultivate the cell in the glucose medium (1st stage) and then produced the xylitol from xylose medium (2nd stage) was developed to improve a xylitol yield and productivity. In the growth stage, glucose was automatically supplied to the fermentor by pH-stat mode when the pH was up 5.7, When a feeding medium was added in order to reach the glucose and yeast extract concentrations up to 100 and 40 g/L, respectively, a high cell concentration and a relatively low ethanol concentration were obtained in 18.5 h culture. In the production stage, initial xylose concentration of 150 g/L was the most favorable for obtaining the final xylitol concentration and productivity. The addition of mineral salts was also enhanced a xylitol production. But the aeration rate was not significantly affected a xylitol production. When the addition of 16 g yeast extract and 232.5 g xylose powder at the production stage was used, xylitol yield and productivity were significantly increased. With these conditions, xylitol concentration, yield and productivity of 108.9 g/L, 74%) and 3.3 g/L·h, respectively, were obtained in a final volume of 1.58 L. The further addition of 16 g yeast extract and 232.5 g xylose powder increased the working volume partly (1.67 L) and resulted in a relatively high xylitol concentration, yield and productivity of 193 g/L, 70% and 3.6 g/L·h, respectively.

Cultural Conditions for Pretense Production by a feather-Degrading Bacterium, Bacillus megaterium F7-1 (우모분해세균 Bacillus megaterium F7-1에 의한 단백질 분해효소 생산에 영향을 미치는 배양조건)

  • Son Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.315-318
    • /
    • 2005
  • The effects of inorganic salts and feather concentrations on pretense production by Bacillus megaterium F7-1 were investigated. Pretense production was dependent on the presence of phosphates in the medium. Supplementation of medium with calcium ion slightly increased protease production. The highest protease production was obtained at $1.4\%$ feather. The optimal medium contained $2.0\%$ glucose, $0.8\%$ skim milk, $0.06\%\;K_{2}HPO_{4}\%,\;0.04\%\;KH_{2}PO{4},\;0.06\%\;NaCl,\;0.03\%\;MgCl_{2}\cdot6H_{2}O,\;0.002\%\;CaCl_{2}\cdot2H_{2}O,\;and\;1.4\%$ whole feather. By using this optimized medium, increased production of the protease was achieved compared with the cases of using basal medium.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

통성혐기성 수소생산균주를 이용한 수소생산효율에 미치는 glucose 및 sucrose 농도의 영향

  • Lee, Eun-Yeong;Lee, Tae-Ho;Ryu, Hui-Uk;Lee, Cheol-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.375-378
    • /
    • 2002
  • Hydrogen producing bacterium, strain Ye13-6 was isolated from the sludge of the factory areas in Gunpo through the acclimation in basal salt medium(BSM) supplemented with 10g/ ${\ell}$ of sucrose. Isolated strain Ye13-6 was a facultative anaerobe which could grow in both aerobic and anaerobic environments. Effects of the concentrations of glucose and sucrose on the hydrogen production rate and the hydrogen production yield were investigated. When glucose in the range of 1${\sim}$12g/ ${\ell}$ was supplemented to the BSM, strain Ye13-6 could grow without lag phase. An increased glucose concentration increased the specific hydrogen production rate linearly to 60mmol-$H_2$ ${\cdot}$ mg-$DCW^{-1}$ ${\cdot}$ $h^{-1}$. The hydrogen production yield was maintained over a range from 2.6 to 3.1mol-$H_2$ ${\cdot}$ mol-$glucose^{-1}$. When sucrose in the range of 1${\sim}$12g/ ${\ell}$ was supplemented to the BSM, strain Ye13-6 could grow after ten hours. An increased sucrose concentration increased the specific hydrogen production rate and the hydrogen production yield to 163mmol-$H_2$ ${\cdot}$ mg-$DCW^{-1}$ ${\cdot}$ $h^{-1}$ and to 4.5mol-$H_2$ ${\cdot}$ mol-$sucrose^{-1}$, respectively.

  • PDF

Optimization of Lactic Acid Production from Kitchen Refuses (음식물쓰레기를 이용한 젖산 생산의 최적화)

  • 이백석;윤현희;김은기
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.207-211
    • /
    • 2001
  • Statistical experimental design methods were employed to select the cultivation factors influencing latic acid production during the fermentation of kitchen refuses. Working volume and pH swings were identified as the main factors affecting lactic acid production. Optimum pH swing was pH 7.8 and working volume was 125 mL in a 250 mL flask. Under optimum condition, lactic acid was produced at 21.8 g/L, which was 6.2 times higher than produced during uncontrolled fermentation.

  • PDF

Hydrogen Production from Photo Splitting of Water Using the Ga-incorporated TiO2s Prepared by a Solvothermal Method and Their Characteristics

  • Chae, Jin-Ho;Lee, Ju-Hyun;Jeong, Jong-Hwa;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.302-308
    • /
    • 2009
  • This study investigated the production of hydrogen over Ga (1.0, 2.0, and 5.0 mol%)-$TiO_2$ photocatalysts prepared by a solvothermal method. The absorption band was slightly blue-shifted upon the incorporation of the gallium ions, but the intensity of the photoluminescence (PL) curves of Ga-incorporated $TiO_2$s was distinguishably smaller, with the smallest case being the 2.0 mol% Ga-$TiO_2$, which was related to the recombination between the excited electrons and holes. $H_2$ evolution from photo splitting of water over Ga-incorporated $TiO_2$ in the liquid system was enhanced, compared to that over pure $TiO_2$; particularly, the production of 5.6 mL of $H_2$ gas after 8 h when 1.5 g of the 2.0 mol% Ga-incorporated $TiO_2$ was used.