• Title/Summary/Keyword: $H_{rms}$

Search Result 220, Processing Time 0.029 seconds

A Study on the Prediction of the Effective Elastic Modulus of the Silicon Shock Programmer under Various Impact Velocities (충돌 속도에 따른 실리콘 충격 프로그래머의 유효 탄성 계수 예측에 관한 연구)

  • Yang, T.H.;Lee, Y.S.;Kim, Y.J.;Kim, T.H.;Shu, C.W.;Yang, M.S.;An, C.H.;Lee, G.S.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • The silicon as the hyper-elastic material was used to design the shock programmer and dynamic characteristic of the shock programmer was studied. The shock programmer was a structure part that was mounted between the impactor and the test bed. The role of the shock programmer was to generate the acceleration time history by the objective of various impact tests. The effective elastic modulus of the silicon was varied under the velocity of the impactor. The effective elastic modulus of the silicon was estimated by the comparison with results between test and simulation.

A Study on Turbulent Characteristics of Turbulent Pulsating Flows in a Square Duct (4각 덕트내에서 난류 맥동유동의 난류특성에 관한 연구)

  • Park, G.M.;Go, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.188-198
    • /
    • 1990
  • Turbulent characteristics of turbulent pulsating flows were studied experimentally in a square duct. Velocity waveforms, velocity profiles, and turbulent intensity of turbulent pulsating flow were investigated by using a hot-wire anemometer with data acquisition and a processing system in a square duct with a ratio of 1 ($40mm{\times}40mm$) to 4,000mm long. Turbulent components were shown to be larger in decelerating than in accelerating regions and also larger for a large phase of velocity and U'rms distribution of turbulent flow. The effect of velocity amplitude ratio does not exist for specified time [${\theta}(z^{\prime})$], amplitude ratio (${\mid}U^{\prime}_{rms.os.1}{\mid}/{\mid}U_{m.os.1}{\mid}$), and phase difference (${\Delta}U^{\prime}_{rms.os.1}-{\Delta}U_{m.os.1}$) in either turbulent oscillating or cross-sectional mean velocity components. The effect of dimensionless angular frequency for specified time [${\theta}(z^{\prime})$] can be disregarded because the dimensionless angular frequency does not affect the specified time. The velocity distributions of turbulent pulsating flows for various time-averaged Reynolds numbers are in approximate agreement with the velocity distributions for equivalent Reynolds numbers and 1/7th power law of steady flow.

  • PDF

Faraday Rotation Measure in the Large Scale Structure III

  • Akahori, Takuya;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • The nature and origin of the intergalactic magnetic field (IGMF) are an outstanding problem of cosmology, yet they are not well understood. Measuring Faraday rotation (RM) is one of a few promising methods to explore the IGMF. We have theoretically investigated RM using a model of the IGMF based on a MHD turbulence dynamo (Ryu et al. 2008; Cho et al. 2009). In the previous KAS meeting, we reported the results for the present-day local universe; for instance, the probability distribution function (PDF) of ${\mid}RM{\mid}$ follows the lognormal distribution, the root mean square (rms) value for filaments is ~1 rad m^{-2}, and the power spectrum peaks at ~1 h^{-1} Mpc scale. In this talk, we extend our study of RM; by stacking simulation data up to redshift z=5 and taking account of the redshift distribution of radio sources, we have reproduced an observable view of RM through filaments against background radio sources. Our findings are as follows. The inducement of RM is a random walk process, so that the rms of RM increases with increasing path length. The rms value of RM for filaments reaches several rad m^{-2}. The PDF still follows the lognormal distribution, and the power spectrum of RM peaks at less than degree scale. Our predictions of RM could be tested, for instance, with LOFAR, ASKAP, MEERKAT, and SKA.

  • PDF

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.

Seed Crystal Surface Properties for Polytype Stability of SiC Crystals Growth (탄화규소 단결정의 폴리타입 안정화를 위한 종자정 표면특성 연구)

  • Lee, Sang-Il;Park, Mi-Seon;Lee, Doe-Hyung;Lee, Hee-Tae;Bae, Byung-Joong;Seo, Won-Seon;Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.863-866
    • /
    • 2013
  • SiC crystal ingots were grown on 6H-SiC dual-seed crystals with different surface roughness and different seed orientation by a PVT (Physical Vapor Transport) method. 4H and 15R-SiC were grown on seed crystal with high root-mean-square (rms) value. The polytype of grown crystal on the seed crystal with lower rms value was confirmed to be 6H-SiC. On the other hand, all SiC crystals grown on seed crystals with different seed orientation were proven to be 6H-SiC. The surface roughness of seed crystals had no effect on the crystal structure of the grown crystals. However, the crystal quality of 6H-SiC single crystals grown on the on-axis seed were revealed to be slightly better than that of 6H-SiC crystal grown on the off-axis seed.

Interfacial Adhesion Properties of Surface Treated Polyarylate Fiber with Polyethylene Naphthalate (폴리아릴레이트 섬유의 표면처리에 의한 폴리에틸렌 나프탈레이트 수지와의 계면접착특성)

  • Yong, Da Kyung;Choi, Han Na;Yang, Ji Woo;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • Morphological changes of polyarylate (PAR) fiber treated with formic acid and ultraviolet (UV) were observed by using a scanning electron microscope (SEM) and an atomic force microscope (AFM). The results were analysed by using root mean square (RMS) roughness. In addition, the chemical changes of surface was investigated using contact angle and the interfacial adhesive strength between PAR fiber and PEN (Polyethylene naphthalate) matrix was calculated using the Pull-out test results. As the acid treatment concentration and UV irradiation time increased, cracks and pores were produced on the PAR fiber surface. Due to the roughness increased, the contact angle was decreased. For this reason, RMS roughness of PAR fiber was increased and the interfacial adhesive strength between the PAR fiber and PEN matrix was improved. The increase of interfacial adhesive strength was responsible for the increase of surface area which have cracks and pores.

Fabrication and Test of the Three-Phase 6.6 kV Resistive Superconducting Fault Current Limiter Using YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 저항형 초전도 한류기 제작 및 시험)

  • Sim J.;Kim H. R.;Park K. B.;Kang J. S.;Lee B. W.;Oh I. S.;Hyun O. B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.50-55
    • /
    • 2004
  • We fabricated and tested a resistive type superconducting fault current limiter (SFCL) of three-phase 6.6 $kV_{rms}/200 A_{rms}$ rating based on YBCO thin films grown on sapphire substrates with a diameter of 4 inches, Short circuit tests were carried out at a accredited test facility for single line-to- ground faults, phase-to-phase faults and three-phase faults, Each phase of the SFCL was composed of 8${\times}$6 elements connected in series and parallel respectively. Each element was designed to have the rated voltage of 600 $V_{rms}$. A NiCr shunt resistor of 23 Ω was connected to each element for simultaneous quenches. Firstly, single phase-to-ground fault tests were carried out. The SFCL successfully developed the impedance in the circuit within 0.12 msec after fault and controlled the fault current of 10 $kA_{rms} below 816 A_{peak}$ at the first half cycle. In addition, in case of phase-to-phase fault and three- phase fault test. simultaneous quenches among the SFCLs of the phases successfully accomplished. In conclusion. the SFCL showed excellent performance of current limitation upon fault and stable operation regardless of the amplitude of fault currents.

Step Response Characteristics of Shunts for Impulse Current (충격전류용 shunt의 직각파 특성)

  • Kim, I.S.;Kim, M.K.;Huh, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1445_1446
    • /
    • 2009
  • This paper represents the step response characteristics of shunts for impulse current. This work is aimed at the development of the reference measuring system(RMS) for impulse current rated 10 kA at 1/$20{\mu}s$, 100 kA at 4/$10{\mu}s$, 20 kA at 8/$20{\mu}s$, 40 kA at 30/$80{\mu}s$. According to the IEC 60060-2, the step response characteristics was assessed. As results of the test, the step response characteristics of newly developed shunts for impulse current satisfied requirements of RMS.

  • PDF