• Title/Summary/Keyword: $H_{2}$ production

Search Result 8,659, Processing Time 0.04 seconds

Effect of Caffeic Acid on the Production of Reactive Oxygen Species in Raw 264.7 Cells (Raw 264.7 세포에서 유해산소 생성에 미치는 Caffeic Acid의 영향)

  • Choi, Byung-Chul
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.441-445
    • /
    • 2008
  • To investigate effect of caffeic acid on the intracellular reactive oxygen species production, we used DHE for intracellular superoxide anion production, DCF for intracellular ${H_2}{O_2}$ production and DHR for intracellular hydroperoxide production in Raw 264.7 cells. DPPH assay showed that antioxidant activity of caffeic acid with 39.5 ${\mu}M$ of ${IC}_{50}$ values was similar to that of ascorbic acid with 41.3 ${\mu}M$ of ${IC}_{50}$ values. Caffeic acid dose-dependently inhibited silica-induced ${H_2}{O_2}$ and hydroperoxide production but did not affect superoxide anion production in Raw 264.7 cells, which suggest that antioxidant effect of caffeic acid acts on the post-step of superoxide anion. On the other hand, caffeic acid showed a potent antioxidant effect in $lCuSO_4$-induced lipid peroxidation. Furthermore, plasma superoxide dismutase activity (3.43${\pm}$0.23 U/ml) in 10 mg/kg caffeic acid-fed mice was significantly higher than that (2.32${\pm}$0.24 U/ml) of control. From the above results, it is referred that caffeic acid appears to have potent anti-oxidant activity in both cell system and in vivo system.

Bacillus licheniformis NS70으로부터 내열성 Alkaline Protease 생산을 위한 배지최적화

  • Koo, Ja-Hyup;Choi, In-Jae;Nam, Hee-Sop;Lee, Hyung-Jae;Shin, Zae-Ik;Oh, Tae-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.207-211
    • /
    • 1997
  • Media optimization for the production of thermostable protease specifically hydrolyzing defatted soybean meal (DSM) from Bacillus licheniformis NS70 was performed by two methods, one-at-a-time method and response surface methodology (RSM). The best carbon source and nitrogen source for the protease production were lactose and DSM, respectively. The maximum protease production estimated by RSM was 606 U/L at 1.11% lactose and 0.43% DSM, the value of which was nearly consistent to the experimental value of 599 U/L. Yeast extract suppressed the protease production. The medium pH was slightly increased at the beginning stage of fermentation, and it tended to decrease after 8 hours. The optimal pH for the protease production was 7.2 in the batch fermentation.

  • PDF

Studies on the Production of Acid Digestive Enzyme -Isolation and Characterization of a Fungal Strain Which Produces Acid Enzymes- (내산성(耐酸性) 소화효소제(消化酵素劑)의 생산(生産)에 관(關)한 연구(硏究) -내산성(耐酸性) 효소생산균(酵素生産菌)의 분리(分離)와 효소(酵素) 생산조건(生産條件)에 관(關)하여-)

  • Sohn, Cheon-Bae;Park, Yoon-Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.241-246
    • /
    • 1981
  • A fungal strain which produced high levels of acid protease and amylase was isolated from the atmosphere for application to the manufacture of digestive enzme preparation. This study was carried out to elucidate its microbiological characteristics, environmental conditions for production of the enzymes, and relationships between the enzyme activity and acidity. 1. The isolate was identified as a fungal strain which belonged to Aspergillus niger by the manual of Rafer and Fennel, and was found to be a strain producing high levels of acid protease and amylase. 2. The optimal pH of tile enzymes produced by the strain were: protease, 2.0;, ${\alpha}-amylase$, 4 to 5; and glucoamylase, 3 to 5. 3. The optimal culture conditions for production of the enzymes were: protease (at pH 2.5), 2 to 3 days incubation on wheat bran at $30^{\circ}C$; ${\alpha}-amylase$ and glucoamylase(at pH 3.0), 3 days incubation at $30^{\circ}C$. 4. The production of acid protease and glucoamylase was increased approximately by 20 percent when 2 percent of corn starch was added to the wheat bran medium. 5. The addition of 0.3 percent ammonium sulfate to the wheat bran medium resulted in enhancing the enzyme production, especially of acid prctease.

  • PDF

A Study for the Optimum pH of Hydrogen Production in Anaerobic Batch Reactor (혐기성 회분반응기에서 수소생산 시 최적 pH 산정에 관한 연구)

  • Jun, Yoon-Sun;Park, Jong-Il;Yu, Seung-Ho;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.54-61
    • /
    • 2007
  • The influences of pH were investigated for anaerobic hydrogen gas production under the constant pH condition ranged from pH 3 to 10. Carbon dioxide and hydrogen gas were main components of the gas but methane was not detected in the produced gas when sucrose was added in enrichment medium. When the modified Gompartz equation was applied for the statistical analysis of experimental data, a hydrogen production potential and maximum gas production rate at pH 5 were 1,182 mL and 112.46 mL/g dry wt biomass/hr. The hydrogen conversion ratio was 22.56%. The butyrate/acetate ratios at pH 5 and pH 6 are 1.63 and 0.38. Higher butyrate/acetate ratio produced more hydrogen gas generation. The Haldane equation model was used to find the optimum pH and fitted well with the experimental data$(r^2=0.98)$. The optimum pH and specific hydrogen production were 5.5 and 119.61 mL/g VSS/h.

Effect of C18-polyunsaturated Fatty Acids on Their Direct Incorporation into the Rumen Bacterial Lipids and CLA Production In vitro

  • Choi, S.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.512-515
    • /
    • 2005
  • An in vitro study was conducted to determine the effect of C18-polyunsaturated fatty acid on direct incorporation into the rumen bacteria, bio-hydrogenation and production of CLA in vitro. Sixty milligrams of linoleic acid ($C_{18:2}$) or linolenic acid ($C_{18:3}$) were absorbed into the 0.5 g cellulose powder was added to the 150 ml culture solution consisting of 120 ml McDougall's buffer and 30 ml strained rumen fluid. Four uCi of 1-$^{14}C_{18:2}$ or 1-$^{14}C_{18:3}$ (1 uCi/15 mg each fatty acid) were also added to the corresponding fatty acids to estimate the direct incorporation into the bacterial lipids. The culture solution was then incubated anaerobically in a culture jar with stirrer at 39$^{\circ}C$ for 12 h. Ammonia concentration and pH of the culture solution were slightly influenced by the fatty acids. Amount of fatty acid incorporated into the bacteria was 1.20 mg and 0.43 mg/30 ml rumen fluid for $C_{18:2}$ and $C_{18:3}$, respectively during 12 h incubation. Slightly increased CLA (sum of cis-9, trans-11 and cis-10, trans-12 $C_{18:2}$) was obtained from the $C_{18:3}$ addition compared to that from $C_{18:2}$ after 12 h incubation in vitro.

Production of Hydrogen-Rich Gas from Methane by a Thermal Plasma Reforming (고온 플라즈마 개질에 의한 메탄으로부터 고농도 수소생산)

  • Kim, Seong-Cheon;Lim, Mun-Sup;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.362-370
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the plasmatron assisted $CH_4$ reforming reaction for the hydrogen-rich gas production. Also, in order to increase the hydrogen production and the methane conversion rate, parametric screening studies were conducted, in which there were the variations of the $CH_4$ flow ratio, $CO_2$ flow ratio, vapor flow ratio, mixing flow ratio and catalyst addition in reactor. High temperature plasma flame was generated by air and arc discharge. The air flow rate and input electric power were fixed 5.1 l/min and 6.4 kW, respectively. When the $CH_4$ flow ratio was 38.5%, the production of hydrogen was maximized and optimal methane conversion rate was 99.2%. Under these optimal conditions, the following synthesis gas concentrations were determined: $H_2$, 45.4%; CO, 6.9%; $CO_2$, 1.5%; and $C_2H_2$, 1.1%. The $H_2/CO$ ratio was 6.6, hydrogen yield was 78.8% and energy conversion rate was 63.6%.

Exopolysaccharide Production and Mycelial Growth in an Air-Lift Bioreactor Using Fomitopsis pinicola

  • Choi, Du-Bok;Maeng, Jeung-Moo;Ding, Ji-Lu;Cha, Wol-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1369-1378
    • /
    • 2007
  • For effective exopolysaccharide production and mycelial growth by a liquid culture of Fomitopsis pinicola in an air-lift bioreactor, the culture temperature, pH, carbon source, nitrogen source, and mineral source were initially investigated in a flask. The optimal temperature and pH for mycelial growth and exopolysaccharide production were $25^{\circ}C$ and 6.0, respectively. Among the various carbon sources tested, glucose was found to be the most suitable carbon source. In particular, the maximum mycelial growth and exopolysaccharide production were achieved in 4% glucose. The best nitrogen sources were yeast extract and malt extract. The optimal concentrations of yeast extract and malt extract were 0.5 and 0.1%, respectively. $K_2HPO_4\;and\;MgSO_4{\cdot}7H_2O$ were found to be the best mineral sources for mycelial growth and exopolysaccharide production. In order to investigate the effect of aeration on mycelial growth and exopolysaccharide production in an air-lift bioreactor, various aerations were tested for 8 days. The maximum mycelial growth and exopolysaccharide production were 7.9 g/l and 2.6 g/l, respectively, at 1.5 vvm of aeration. In addition, a batch culture in an air-lift bioreactor was carried out for 11 days under the optimal conditions. The maximum mycelial growth was 10.4 g/l, which was approximately 1.7-fold higher than that of basal medium. The exopolysaccharide production was increased with increased culture time. The maximum concentration of exopolysaccharide was 4.4 g/l, which was about 3.3-fold higher than that of basal medium. These results indicate that exopolysaccharide production increased in parallel with the growth of mycelium, and also show that product formation is associated with mycelial growth. The developed model in an air-lift bioreactor showed good agreement with experimental data and simulated results on mycelial growth and exopolysaccharide production in the culture of F. pinicola.

Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells (태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Deduction of Optimum Factors for Hydrogen Production from Organic Resources using a Continuous Reaction Process (연속반응공정을 이용한 유기성자원으로부터 수소생산을 위한 최적인자도출에 관한 연구)

  • Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.22-27
    • /
    • 2011
  • This study was performed to find out the optimum condition for hydrogen production by changing mixture ratio from 3:7(food waste water : swine wastewater) without pre-treatment of food wastewater and swine wastewater using a continuous reaction process. It was confirmed that hydrogen generation according to pH is the highest in a condition of pH 5.5, and that the optimum pH for hydrogen production in case of mixing food wastewater with swine wastewater is 5.5 through this. Hydrogen generation according to HRT showed high hydrogen generation rate in case of 4 days rather than 3 days, and this involves largely in vitality of hydrogen producing bacteria according to variation of the HRT value, so it is judged that HRT also acts as an important factor to hydrogen producing bacteria. The organic removal efficiency recorded a removal efficiency of maximum TS 52%, VS 71%, TSS 83% and VSS 89% at the 6th day of operation, and it was confirmed that organic removal efficiency is possible even through an hydrogen production process.

Preparation of Dihydroxy Naphthalene/TiO2 Complex via Surface Modification and Their Photocatalytic H2 Production Performances Under Visible Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2056-2062
    • /
    • 2013
  • The dihydroxy naphthalene/$TiO_2$ complexes with different substitution patterns were prepared by surface modification. X-ray diffraction, UV-Vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared composite materials. The results indicated that the surface modification did not influence the crystallization of $TiO_2$. The visible-light absorbances of prepared dihydroxy naphthalene/$TiO_2$ complexes could be assigned to the ligand-to-metal charge transfer. The obtained catalyst exhibited outstanding photocatalytic activity and stability under visible light. A linear relationship existed between the percentages of hydroxynaphthalenes coordinated on $TiO_2$ surface and $H_2$ production ability. The substitution pattern of dihydroxy naphthalene and $CH_3OH$ content could also influence the photocatalytic performance remarkably. The photocatalytic $H_2$ production ability was further improved after loading with ultra low concentration of Pt, 0.02 wt %. The possible mechanism was proposed.