A Study for the Optimum pH of Hydrogen Production in Anaerobic Batch Reactor

혐기성 회분반응기에서 수소생산 시 최적 pH 산정에 관한 연구

  • Jun, Yoon-Sun (Department of Environmental Engineering, Seoul National University of Technology Radiation Application Research Division) ;
  • Park, Jong-Il (Department of Environmental Engineering, Seoul National University of Technology Radiation Application Research Division) ;
  • Yu, Seung-Ho (Korea Atomic Energy Research Institute) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Technology Radiation Application Research Division)
  • 전윤선 (서울산업대학교 환경공학과) ;
  • 박종일 (서울산업대학교 환경공학과) ;
  • 유승호 (한국원자력연구소 방사선이용연구부) ;
  • 이태진 (서울산업대학교 환경공학과)
  • Published : 2007.01.31

Abstract

The influences of pH were investigated for anaerobic hydrogen gas production under the constant pH condition ranged from pH 3 to 10. Carbon dioxide and hydrogen gas were main components of the gas but methane was not detected in the produced gas when sucrose was added in enrichment medium. When the modified Gompartz equation was applied for the statistical analysis of experimental data, a hydrogen production potential and maximum gas production rate at pH 5 were 1,182 mL and 112.46 mL/g dry wt biomass/hr. The hydrogen conversion ratio was 22.56%. The butyrate/acetate ratios at pH 5 and pH 6 are 1.63 and 0.38. Higher butyrate/acetate ratio produced more hydrogen gas generation. The Haldane equation model was used to find the optimum pH and fitted well with the experimental data$(r^2=0.98)$. The optimum pH and specific hydrogen production were 5.5 and 119.61 mL/g VSS/h.

pH가 혐기성 수소 발효에 미치는 영향을 고찰하기 위해 배양기간 동안 pH를 $3\sim10$까지 일정하게 유지시킨 상태에서 수소생산 효율을 살펴보았다. 유입기질을 sucrose로 하여 생성된 가스는 이산화탄소와 수소였으며 메탄가스는 검출되지 않았다. 수정 Gompartz 방정식을 이용하여 수소가스 발생량$(P_h)$과 최대수소 생성율$(R_h)$을 회귀분석하였을 때 pH 5에서 수소가스 발생량$(P_h)$은 약 1182 mL이고 최대수소 생성율$(R_h)$은 112.46 mL/g dry wt biomass/hr이였다. 수소 전환율은 22.56%이였으며 butyrate/acetate 비가 pH 5에서는 1.63, pH 6에서는 0.38로 ratio값이 높은 pH 5에서 효율이 더 좋다는 것을 확인할 수 있었다. Haldane equation을 이용하여 비수소생산율을 산정해 본 결과 최대 비수소생산율은 119.61 mL/g VSS/hr이였고, 최대 비수소생산율을 나타내는 pH는 5.5로 판명되었다.

Keywords

References

  1. Momirlan, M. and Veziroglu, T., 'Recent directions of world hydrogen production,' Renew. Sust. Energ. Rev., 3, 219-231(1999) https://doi.org/10.1016/S1364-0321(98)00017-3
  2. Miura Y., Ohta, S., Mano, M., and Miyamoto, K., 'Isolation and characterization of a unicellular marine green alga exhibiting high activity in dark hydrogen production,' Agric. Biol. Chem., 50, pp. 2837-2844(1986) https://doi.org/10.1271/bbb1961.50.2837
  3. Rifkin, J., 'The hydrogen economy: the worldwide energy web and the redistribution of the power on earth,' Penguin Putnam, New Work, NY US, pp. 15-17(2002)
  4. Rifkin, J., 'The hydrogen economy,' Putnam Pub Group (2003)
  5. Das, D., Vexiroglu, T. N., 'Hydrogen production by biological processes: a survey of literature,' International Journal of Hydrogen Energy, 26, 13-28(2001) https://doi.org/10.1016/S0360-3199(00)00058-6
  6. Bae, M. 'Production of bio-hydrogen from waste materials', Research Report, Ministry of Trade, Industry, and Energy, 941C401-364FPI(1995)
  7. Heyndrix, M., De Vos, P., Thibau, B., Stevens, P., and JI De Ley, 'Effect of various external factorson the fermentative production of hydrogen gas from glucoes by Clostridium butyricum strains in batch culture system,' Appl. Microbial, 9, 163-168(1987) https://doi.org/10.1016/S0723-2020(87)80072-3
  8. Van Andel, J. G., Zoutberg, G. R., Crabbendam, P. M., and Breau, A. M., 'Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture,' Appl. Microbial. Biotechnol., 23, pp. 21-26(1985) https://doi.org/10.1007/BF02660113
  9. Leclerc, M., Bernalier, A., and Donadille, G., Lelait M., '$H_2/CO_2$ metabolism in acetogenic bacteria isolated from the human colon,' Anaerobe, 3, pp. 307-315(1997) https://doi.org/10.1006/anae.1997.0117
  10. Morvan, B., Rieu-Lesme, F., Fonty, G., and Gouet, P., 'In vitro interactions between rumen H2-utilizing acetogenic and sulfate-reducing bacteria,' anaerobe, 2, pp. 175-180(1996) https://doi.org/10.1006/anae.1996.0023
  11. Han, S. K. and shin, H. S., 'Biohydrogen production by anaerobic fermentation of food waste,' Int. J. Hydrogen Energy, 29, pp. 569-577(2004) https://doi.org/10.1016/j.ijhydene.2003.09.001
  12. Fang, H. H. P. and Liu, H., 'Effect of pH on hydrogen production from glucose by a mixed culture,' Bioresource Technol., 82, 87-93(2002) https://doi.org/10.1016/S0960-8524(01)00110-9
  13. Samir Kumar Khanal, Wen-Hsing Chen, Ling Li, Shihwn Sung, 'Biological hydrogen production: effects of pH and intermediate products,' Int. J. Hydrogen Energy, 29, 1123-1131(2004)
  14. Lee, Y. J., Takashi, M., and Tatsuya, N., 'Effect of pH on microbial hydrogen fermentation,' J. Chemical Technology and Biotechnology, 77, 694-698(2002) https://doi.org/10.1002/jctb.623
  15. Mannix Salvador Pedro, Shin Haruta, Masaru Hazaka, Rumiko Shimada, Chie Yoshida, Koichiro Hiura, Masa-haru Ishii, and Yasuo Igarashi, 'Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter,' J. Bioscience and Bioengineering, 91(2), 159-165(2001) https://doi.org/10.1016/S1389-1723(01)80059-1
  16. Zajic, J. E., Kosaric, N., and Brosseau, J. D., 'Microbial production of hydrogen,' Adv. Biochem. Eng., 7, 57-109 (1978)
  17. 박종분, 조지혜, '생물학적 수소 생산의 현황 및 전망,' DICER Techlnfo Part I, 3(8), 114-132(2004)
  18. Logan, B. E., Oh, S. E., Kim, I. S., Ginkel, S. V, 'Biological hydrogen production measured in batch anaerobic respirometers,' Environmental Science and Technology, 36(11), 2530-2535(2002) https://doi.org/10.1021/es015783i
  19. Lay, J. J., Li, Y. Y., Noike, T., 'The influences of pH and ammonia concentration on the methane production in high-solids digestion,' Water Environ. Res., 70(5), 1075-1082(1998) https://doi.org/10.2175/106143098X123426
  20. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., 'Colorimetric method for determination of sugars and related substances,' Analytical Chemistry, 28(3), 350-356(1956) https://doi.org/10.1021/ac60111a017
  21. APWA, AWWA, WPCF, Standard methods for the examination of water and wastewater, 20th ed.(1999)
  22. Hawkes, F. R., Dinsdal, R., Hawkes, D. L., Hussy, I., 'Sustainable fermentative hydrogen production: Challenges for process optimisation,' Int. J. Hydrogen Energ, 27, 1339-1347(2002) https://doi.org/10.1016/S0360-3199(02)00090-3
  23. Kusel, K., Dorch, T., Acker, G., Stackebrandt, E., and Drake, H. L., 'Clostridium scatologenes strain SL1 isolated as an acetoclastic bacterium form acidic sediments,' Int. J. Syst. Evol. Micr., 50, 537-549(2000) https://doi.org/10.1099/00207713-50-2-537
  24. Chen, C.-C. and Lin, C.-Y., 'Using sucrose as a substrate in an anaerobic hydrogen -producing reactor,' Adv. Environ. Res., 7, 695-699(2003) https://doi.org/10.1016/S1093-0191(02)00035-7
  25. Lay, Jiunn-jyi, Yu-you Li and Tatsuya Noike, 'Influence of pH and moisture content on the methane production in high-solids sludge digestion,' Water Res., 31(6), 1518-1524(1997) https://doi.org/10.1016/S0043-1354(96)00413-7