• Title/Summary/Keyword: $H_{2}$ gas sensor

Search Result 292, Processing Time 0.03 seconds

A study on CO gas sensing Characteristics of Pt-SiC $SnO_2$-pt-SiC Schottky Diodes (Pt 및 Pt-$SnO_2$를 전극으로 하는 SiC 쇼트키 다이오드의 CO 가스 감응 특성)

  • Kim, C.K.;Noh, I.H.;Yang, S.J.;Lee, J.H.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.805-808
    • /
    • 2002
  • A carbon monoxide gas sensor utilizing Pt-SiC, Pt-SnO2-SiC diode structure was fabricated. Since the operating temperature for silicon devices in limited to 200oC, sensor which employ the silicon substrate can not at high temperature. In this study, CO gas sensor operating at high temperature which utilize SiC semiconductor as a substrate was developed. Since the SiC is the semiconductor with wide band gap. the sensor at above $700^{\circ}C$. Carbon monoxide-sensing behavior of Pt-SiC, Pt-SnO2-SiC diode is systematically compared and analyzed as a function of carbon monoxide concentration and temperature by I-V and ${\Delta}$I-t method under steady-state and transient conditions.

  • PDF

Environmental Monitoring Sub-System for Ubiquitous Terminal Using Metal Oxide Nano-Material Gas Sensor (나노 금속산화물을 이용한 유단말용 환경 모니터링 서브 시스템)

  • Moon, S.E.;Lee, H.Y.;Lee, J.W.;Park, J.;Park, S.J.;Kwak, J.H.;Maeng, S.;Park, K.H;Kim, J.;Udrea, F.;Milne, W.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.63-63
    • /
    • 2008
  • Environmental monitoring sub-system has been developed using gas sensor module, Bluetooth module and PDA phone. The gas sensor module consists of $NO_2or$ CO gas sensor and signal processing chips. Gas sensor is composed of the micro-heater, sensing electrode and sensing material. Metal oxide nano-material was selectively deposited on a substrate with micro-heater and was integrated to the gas sensor module. The change in resistance of the metal oxide nano-material due to exposure of oxidizing or deoxidizing gases is utilized as the principle of this gas sensor operation mechanism. This variation detected in the gas sensor module was transferred to the PDA phone by way of Bluetooth module.

  • PDF

Influence of pH on Sensitivity of $WO_3$ NO gas sensor fabricated by Sol-Coprecipitation method (Sol-Coprecipitation 법에 의한 NO 감지용 $WO_3$ 센서 제조시 pH의 영향)

  • Kim, Suk-Bong;Lee, Dae-Sik;Lee, Duk-Dong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2001
  • When particles are dissolved in solution, they have different zeta-potentials depending on pH. Zeta-potential has an influence on particle separation, which can control particle size. And the size of $WO_3$ particle affects the sensitivity of $WO_3$ sensor for detecting NO gas. Therefore we study influence of pH on NO-sensing $WO_3$ gas sensor fabricated by Sol-Coprecipitation method. As pH increases from 2 to 7, dynamic mobility of $WO_3$ precursor was increased. When pH was 7, it showed the largest distribution separation. It means when pH is 7, we can make $WO_3$ powder which has smaller particle size. And it is confirmed by particle size analysis of $WO_3$ powder, X-ray diffration result of $WO_3$ sensing layer and surface morphology. It also affect NO sensing characteristics of $WO_3$ gas sensor. The sensing film synthesized at pH 7 showed the largest sensitivity.

  • PDF

Gas Sensing Characteristics of WO3-Doped SnO2 Thin Films Prepared by Solution Deposition Method (용액적하법으로 제조된 WO3 첨가 SnO2 박막의 가스감응 특성)

  • Choi, Joong-Ki;Cho, Pyeong-Seok;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.193-198
    • /
    • 2008
  • $WO_3$-doped $SnO_2$ thin films were prepared in a solution-deposition method and their gas-sensing characteristics were investigated. The doping of $WO_3$ to $SnO_2$ increased the response ($R_a/R_g,\;R_a$: resistance in air, $R_g$: resistance in gas) to $H_2$ substantially. Moreover, the $R_a/R_g$ value of 10 ppm CO increased to 5.65, whereas that of $NO_2$ did not change by a significant amount. The enhanced response to $H_2$ and the selective detection of CO in the presence of $NO_2$ were explained in relation to the change in the surface reaction by the addition of $WO_3$. The $WO_3$-doped $SnO_2$ sensor can be used with the application of a $H_2$ sensor for vehicles that utilize fuel cells and as an air quality sensor to detect CO-containing exhaust gases emitted from gasoline engines.

Effects of Metal-Organic Framework Membrane on Hydrogen Selectivity

  • Suh, Jun Min;Cho, Sung Hwan;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.374-381
    • /
    • 2020
  • Hydrogen gas has attracted considerable attention as a promising candidate for future energy resources because of its eco-friendly characteristics; however, its highly combustible characteristics should be thoroughly examined to preclude potential disasters. In this regard, a highly sensitive method for the selective detection of H2 is extremely important. To achieve excellent H2 selectivity, the utilization of a metal-organic framework (MOF) membrane can physically screen interfering gas molecules by restricting the size of kinetic diameters that can penetrate its nanopores. This paper summarizes the various endeavors of researchers to utilize the MOF molecular sieving layer for the development of highly selective H2 sensors. Further, the review affords useful insights into the development of highly reliable H2 sensors.

The effect of additive on $SnO_2$ gas sensor for improving stability ($SnO_2$계 가스 센서의 안정성 향상을 위한 산화물의 첨가 효과)

  • Park, Kwang-Mook;Min, Bong-Ki;Choi, Soon-Don;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.865-868
    • /
    • 2002
  • $SnO_2$ powders were prepare by precipitating $Sn(OH)_4$ from an aqueous solution of $SnCl_4{\cdot}5H_2O$, pH 9.5. The effects of stability and sensitivity of $SnO_2$ thick film sensors added with various amounts, $SiO_2$, $Al_2O_3$, $ZrO_2$, $TiO_2$ have been investigated. It is shown that the 3wt% $Al_2O_3$ or $SiO_2$ can improve the stability of $SnO_2$ gas sensor at an operating temperature of $350^{\circ}C$.

  • PDF

Highly Sensitive and Selective Gas Sensors Using Catalyst-Loaded SnO2 Nanowires

  • Hwang, In-Sung;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • Ag- and Pd-loaded $SnO_2$ nanowire network sensors were prepared by the growth of $SnO_2$ nanowires via thermal evaporation, the coating of slurry containing $SnO_2$ nanowires, and dropping of a droplet containing Ag or Pd nanoparticles, and subsequent heat treatment. All the pristine, Pd-loaded and Ag-loaded $SnO_2$ nanowire networks showed the selective detection of $C_2H_5OH$ with low cross-responses to CO, $H_2$, $C_3H_8$, and $NH_3$. However, the relative gas responses and gas selectivity depended closely on the catalyst loading. The loading of Pd enhanced the responses($R_a/R_g$: $R_a$: resistance in air, $R_g$: resistance in gas) to CO and $H_2$ significantly, while it slightly deteriorated the response to $C_2H_5OH$. In contrast, a 3.1-fold enhancement was observed in the response to 100 ppm $C_2H_5OH$ by loading of Ag onto $SnO_2$ nanowire networks. The role of Ag catalysts in the highly sensitive and selective detection of $C_2H_5OH$ is discussed.

Tunable Electrical Properties of Aligned Single-Walled Carbon Nanotube Network-based Devices: Metallization and Chemical Sensor Applications

  • Kim, Young Lae;Hahm, Myung Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.535-538
    • /
    • 2017
  • Here we report the tunable electrical properties and chemical sensor of single-walled carbon nanotubes (SWCNTs) network-based devices with a functionalization technique. Formation of highly aligned SWCNT structures is made on $SiO_2/Si$ substrates using a template-based fluidic assembly process. We present a Platinum (Pt)-nanocluster decoration technique that reduces the resistivity of SWCNT network-based devices. This indicates the conversion of the semiconducting SWCNTs into metallic ones. In addition, we present the Hydrogen Sulfide ($H_2S$) gas detection by a redox reaction based on SWCNT networks functionalized with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) as a catalyst. We summarize current changes of devices resulting from the redox reactions in the presence of $H_2S$. The semiconducting (s)-SWCNT device functionalized with TEMPO shows high gas response of 420% at 60% humidity level compared to 140% gas response without TEMPO functionalization, which is about 3 times higher than bare s-SWCNT sensor at the same RH. These results reflect promising perspectives for real-time monitoring of $H_2S$ gases with high gas response and low power consumption.

Fast Responding Gas Sensors Using Sb-Doped SnO2 Nanowire Networks (Sb-첨가 SnO2 나노선 네트워크를 이용한 고속응답 가스센서)

  • Kwak, Chang-Hoon;Woo, Hyung-Sik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.302-307
    • /
    • 2013
  • The Sb-doped $SnO_2$ nanowire network sensors were prepared by thermal evaporation of the mixtures between tin and antimony powders. Pure $SnO_2$ nanowire networks showed high sensor resistance in air ($99M{\Omega}$), similar gas responses to 4 diffferent gases (5 ppm $C_2H_5OH$, CO, $H_2$, and trimethylamine), and very sluggish recovery speed (90% recovery time > 800 s). In contrast, 2 wt% Sb-doped $SnO_2$ showed the selective detection toward $C_2H_5OH$ and trimethylamine, relatively low resistance ($176k{\Omega}$) for facile measurement, and ultrafast recovery speed (90% recovery times: 6 - 18 s). The change of gas sensing charactersitics by Sb doping was discussed in relation to gas sensing mechanism.

Gas Sensing Characteristics of Sb-doped SnO2 Nanofibers

  • Choi, Joong-Ki;Hwang, In-Sung;Kim, Sun-Jung;Park, Joon-Shik;Park, Soon-Sup;Dong, Ki-Young;Ju, Byeong-Kwon;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Undoped and Sb-doped $SnO_2$ nanofibers were prepared by electrospinning and their responses to $H_2$, CO, $CH_4$, $C_3H_8$, and $C_2H_5OH$ were measured. In the undoped $SnO_2$ nanofibers, the gas response ($R_a/R_g$, $R_a$: resistance in air, $R_g$: resistance in gas) to 100 ppm $C_2H_5OH$ was very high(33.9), while that to the other gases ranged from 1.6 to 2.2. By doping with 2.65 wt% Sb, the response to 100 ppm $C_2H_5OH$ was decreased to 4.5, whereas the response to $H_2$ was increased to 3.0. This demonstrates the possibility of detecting a high $H_2$ concentration with minimum interference from $C_2H_5OH$ and the potential to control the gas selectivity by Sb doping.