• 제목/요약/키워드: $H_{2}$ gas sensor

Search Result 292, Processing Time 0.027 seconds

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal (Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정)

  • Kim, Jung-Sik;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres

  • Jeong, Seong Yong;Choi, Seung Ho;Yoon, Ji-Wook;Won, Jong Min;Kang, Yun Chan;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.151-154
    • /
    • 2015
  • The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.

NH3 Sensing Properties of SnO Thin Film Deposited by RF Magnetron Sputtering

  • Vu, Xuan Hien;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.272-272
    • /
    • 2014
  • SnO thin films, 100 nm in thickness, were deposited on glass substrates by RF magnetron sputtering. A stack structure of $SnO_2/SnO$, where few nanometers of $SnO_2$ were determined on the SnO thin film by X-ray photoelectron spectroscopy. In addition, XPS depth profile analysis of the pristine and heat treated thin films were introduced. The electrical behavior of the as-sputtered films during the annealing was recorded to investigate the working conditions for the SnO sensor. Subsequently, The NH3 sensing properties of the SnO sensor at operating temperature of $50-200^{\circ}C$ were examined, in which the p-type semiconducting sensing properties of the thin film were noted. The sensor shows good sensitivity and repeatability to $NH_3$ vapor. The sensor properties toward several gases like $H_2S$, $CH_4$ and $C_3H_8$ were also introduced. Finally, a sensing mechanism was proposed and discussed.

  • PDF

Improve H2S Gas Sensing Characteristics through SnO2 Microparticle Surface Modification and Ti Nanoparticle Decoration using Tip Sonication (Tip sonication을 이용한 SnO2 마이크로 입자 표면 개질 및 Ti 나노 입자 장식을 통한 H2S 가스 감지 특성 향상)

  • Ji Yeon Shin;Chan Gyu Kim;Ji Myeong Park;Hong Nhung Le;Jeong Yun Hwang;Myung Sik Choi
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.105-111
    • /
    • 2024
  • In this study, the H2S gas sensing characteristics were evaluated using surface-modified SnO2 microparticles by tip sonication. The surface-modified SnO2 microparticles were synthesized using the following sequential process. First, bare SnO2 microparticles were synthesized via a hydrothermal method. Then, the surfaces of bare SnO2 microparticles were modified with Ti nanoparticles during tip sonication. The sensing characteristics of SnO2 microparticles modified with Ti were systematically investigated in the range of 100-300℃, compared with the bare SnO2 microparticles. In this study, we discuss in detail the improved H2S sensing characteristics of SnO2 microparticles via Ti nanoparticle modification.

Effect of Ni Interlayer on the Methanol Gas Sensitivity of ITO Thin Films

  • Lee, Y.J.;Huh, S.B.;Lee, H.M.;Shin, C.H.;Jeong, C.W.;Chae, J.H.;Kim, Y.S.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.245-248
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Ni/ITO (INI) multilayer films were deposited on the glass substrates with a reactive magnetron sputtering system without intentional substrate heating and then the influence of the Ni interlayer on the methanol gas sensitivity of ITO and INI film sensors were investigated. Although both ITO and INI film sensors have the same thickness of 100 nm, INI sensors have a sandwich structure of ITO 50 nm/Ni 5 nm/ITO 45 nm. The changes in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm were measured. It is observed that the INI film sensors show the higher sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the INI film sensor have the potential to be used as improved methanol gas sensors.

Pd-doped $SnO_2$-based oxide semiconductor thick-film gas sensors prepared by three different catalyst-addition processes

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Three different procedures for adding Pd compounds to $SnO_2$ particles have been investigated. These processes are: (1) coprecipitation; (2) dried powder impregnation; and (3) calcined powder impregnation. The microstructures of $SnO_2$ particles have been analyzed by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). In the coprecipitaion method, the process does not restrain the growth of $SnO_2$ particles and it forms huge agglomerates. In the dried powder impregnation method, the process restrains the growth of $SnO_2$ particles and the surfaces of the agglomerates have many minute pores. In the calcined powder impregnation method, the process restrains the growth of $SnO_2$ particles further and the agglomerates have a lot more minute pores. The sensitivity ($S=R_{air}/R_{gas}$) of the $SnO_2$ gas sensor made by the calcined powder impregnation process shows the highest value (S = 21.5 at 5350 ppm of $C_3H_8$) and the sensor also indicates the lowest operating temperature of around $410^{\circ}C$. It is believed that the best result is caused by the plenty of minute pores at the surface of the microstructure and by the catalyst Pd that is dispersed at the surface rather than the inside of the agglomerate. Schematic models of Pd distribution in and on the three different $SnO_2$ particles are presented.

The study of direct ${\mu}c$-Si:H film growth using RPCVD system in low temperature (RPCVD system을 이용한 ${\mu}c$-Si:H의 저온 직접 성장 연구)

  • Ahn, Byeong-Jae;Kim, Do-Young;Lim, Dong-Gun;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1818-1820
    • /
    • 1999
  • This paper presents direct ${\mu}c$-Si:H thin film growth on the glass substrates using RPCVD system (remote plasma chemical vapor deposition) in low temperature. Hydrogenated micro-crystalline silicon deposited by RPCVD system in low temperature is very useful material for photovoltaic devices, sensor applications, and TFTs (thin film transistors). Varying the deposition conditions such as substrate temperature, gas flow rate, reactive gas ratio $(SiH_4/H_2)$, total chamber pressure, and rf power, we deposited ${\mu}c$-Si:H thin films on the glass substrates (Corning glass 1737). And then we measured the structural and electrical properties of the films.

  • PDF

Gas Sensing Property of SnO2 Nanoparticles Synthesized by Flame Spray Pyrolysis (화염 분무 열분해법에 의해 합성된 SnO2 나노입자의 가스 감응 특성)

  • Kim, Hong-Chan;Shin, Dong-Wook;Hong, Seong-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.626-631
    • /
    • 2012
  • $SnO_2$ nanoparticles were synthesized by flame spray pyrolysis, which were directly deposited on Pt interdigitated substrates. Gas sensing performance was evaluated for various gases such as $H_2$, CO, $H_2S$, and $NH_3$, and it was compared with that of commercial $SnO_2$ nanopowder. The synthesis of $SnO_2$ nanoparticles was also conducted in various solvents. As a result, the primary particle size was changed with the solvent of precursor solution, and their $H_2$ sensing properties were significantly affected.