• Title/Summary/Keyword: $H_{\infty}$서보제어기

Search Result 26, Processing Time 0.023 seconds

$H_{\infty}$ Depth and Course Controllers Design for Autonomous Underwater Vehicles (무인 수중운동체의 $H_{\infty}$ 심도 및 방향 제어기 설계)

  • Yang, Seung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2980-2988
    • /
    • 2000
  • In this paper, H(sub)$\infty$ depth and course controllers of autonomous underwater vehicles using H(sub)$\infty$ servo control are proposed. An H(sub)$\infty$ servo problem is foumulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H(sub)$\infty$servo problem is as follows; firest, this problem is modified as an H(sub)$\infty$ control problem for the generalized plant that includes a reference input mode, and than a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach, The H(sub)$\infty$depth and course controllers are designed to satisfy the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(was force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controlled are evaluated with computer simulations, and finally these simulation results show the usefulness and applicability of the propose H(sub)$\infty$ depth and course control systems.

Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control (H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동 되는 공압 밸브의 압력제어)

  • Jo, Myeong-Su;Yu, Jung-Gyu;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.399-405
    • /
    • 2002
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust H$_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

[ $H_{\infty}$ ] Optimal Control for Single-Rod Hydraulic Servo-System with DSP (DSP를 이용한 편로드 유압서보시스템의 $H_{\infty}$ 최적제어)

  • Jung, Gyu-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.515-520
    • /
    • 2001
  • Due to the high power to weight ratio and fast response under heavy load, the hydraulic systems are still applied to the development of many industrial facilities such as heavy duty construction vehicles, aerospace/military weapon actuating systems and motion simulators. Unlike the other actuators, single-rod hydraulic cylinder exhibits a lot different dynamic characteristics between the extending and retracting stroke because of the difference in pressure acting areas. In this research, in order to overcome this nonlinear feature, $H_{\infty}$ optimal controller was designed and implemented with DSP board that was specifically developed for the experiment. From the experimental result, we could confirm that the overall performance of single-rod hydraulic servo system is similar with the results as we expected in the design stage.

  • PDF

A study on the improvement of cutting precision of CNC system using $H_{\infty}$ 2-degree-of-freedom controller ($H_{\infty}$ 2 자유도 제어기를 이용한 CNC 시스템의 가공 정밀도 향상에 관한 연구)

  • 최성규;최병욱;현용탁;강성귀;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1040-1043
    • /
    • 1996
  • The accuracy of the servo control in CNC system has a great influence on the duality of machine product. Tracking performance of the servo control is deteriorated mainly by the time delay of the servo system and the inertia of the work table or bed. Contouring errors occur in every interpolation steps by the effect of the tracking performance. In this paper, $H_{\infty}$ two-degree-of-freedom(TDF) controller is designed for improvement to improve the tracking performance. The designed controller is applied 3-axis machining center model and the cutting accuracy is simulated in case of corner cutting, circular and involute interpolation. Simulation results show that $H_{\infty}$ TDF controller designed in this paper has a good effect to improve tracking performance in CNC system.

  • PDF

A Study on the Fault Detection of an Integrated Servo Actuator (통합 서보 액츄에이터의 고장 감지시스템 연구)

  • 신기현;임광호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.306-312
    • /
    • 1996
  • The performance of the failure detection algorithm may be greatly influenced by the model uncertainty. It is very important to design a robust failure detection system to the model uncertainty. In this paper, a design procedure to generate failure detection algorithm is proposed. The design procedure suggested is based on the concept of the‘threshold selector[1]’. The H$\infty$ control algorithm is used to derive a threshold selector which is robust to the model uncertainty, The threshold selector derived can be used to develop a failure detection system together with the weighted cumulative sum algorithm[3]. Computer simulation study showed that the failure detection system designed for an ISA(Integrated Servo Actuator) system by using the proposed method is robust to the model uncertainty.

  • PDF

A study on the ramp tracking controller for the servo systems with nonlinear friction and resonance using $H_{\infty}$controller design method ($H_{\infty}$제어기법을 이용한 비선형 마찰 및 공진 효과가 존재하는 서보시스템의 램프추종 제어기 설계에 관한 연구)

  • Choi, Ho-Jun;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.423-425
    • /
    • 1998
  • Resonance effects and nonlinear frictions which generate many problems in control system exist in almost all the servo system. therefore, In this paper, the design procedure which employs $H_{\infty}$ control theory after augmenting with two integrators is proposed to track the ramp input. Limit cycles are unavoidable by the effect of interaction between two integrators and Coulomb friction in these system. The describing function is used to check the limit cycles and decide the coefficients of two integrators to minimize the effect of the limit cycles.

  • PDF

A study on the development of $H_{\infty}$ 2-DOF controller for servo motors (서보모터 제어를 위한 $H_{\infty}$ 2-자유도 제어기 개발에 관한 연구)

  • Park, Sung-Chun;Park, Se-Hwa;Kim, Hee-Jun;Choi, B.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3073-3076
    • /
    • 1999
  • In this paper, $H_{\infty}$ two-degree-of freedom(2-DOF) model following control method is applied for the control of a brushless servo motor to achieve high robust performance. The proposed robust control algorithm designed to meet the robust stability and performances present that the robust control method is superior to conventional control methods in controlling the speed and position of a servo motor. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. It is illustrated by simulations that the proposed method is effective to control servo systems.

  • PDF

The Robust Servo Controller Design of Magnetic Levitation System Considering Pole Assignment Region (극 배치영역을 고려한 자기 부상계의 로버스트 서보제어기 설계)

  • Kim, C.H.;Jeong, H.J.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.84-91
    • /
    • 2000
  • This paper describes a state feedback controller design method of the integral type magnetic levitation servo system which satisfies the design objectives. The design objective is a $H_{\infty}$ performance, asymptotic disturbance rejection and a robust pole assignment in linear matrix inequality(LMI) region. To the end, we investigated the validity of the designed controller which considering a robust pole assignment region, through results of simulation.

  • PDF

Design of a Multiobjective Robust Controller for the Track-Following System of an Optical Disk Drive (광 디스크 드라이브의 트랙킹 서보 시스템을 위한 다목적 강인 제어기의 설계)

  • 이문노;문정호;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.592-599
    • /
    • 1998
  • In this paper, we design a tracking controller which satisfies transient response specifications and maintains tracking error within a tolerable limit for the uncertain track-following system of an optical disk drive. To this end, a robust $H_{\infty}$ control problem with regional stability constraints and sinusoidal disturbance rejection is considered. The internal model principle is used for rejecting the sinusoidal disturbance caused by eccentric rotation of the disk. We show that a condition satisfying the regional stability constraints can be expressed in terms of a linear matrix inequality (LMI) using the Lyapunov theory and S-procedure. Finally, a tracking controller is obtained by solving an LMI optimization problem involving two linear matrix inequalities. The proposed controller design method is evaluated through an experiment.

  • PDF