• Title/Summary/Keyword: $H^{\infty}$ robust performance

Search Result 254, Processing Time 0.021 seconds

Swing Motion Control System Design Based on Frequency-shaped LQ Control (주파수 의존형 최적 레귤이터에 의한 크레인 흔들림 제어계 설계)

  • Kim, Y.B.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2008
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. Futhermore the measuring systems based on image sensor have been proposed also. To obtain the robustness for our control system, $H_{\infty}$ based control techniques and other approach have been applied to suppress swing motion. As well known, the robust control technologies based on $H_{\infty}$ control need complicated and difficult process. In the result, the obtained closed-loop system becomes to high order system which may give us many difficulties to apply it to the real plants. Therefore, we introduce an easy approach which is based on LQ control theory. In this approach, we introduce the frequency dependent weighting matrices which give the system filters to shape frequency characteristics of the controlled system and guarantee the control performance.

  • PDF

A Robustness Control of Magnetic Levitation System Using Linear Matrix Inequality (선형행렬부등식을 이용한 자기 부상계의 강인성 제어)

  • Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.79-85
    • /
    • 1999
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor system because of little friction, no lubrication, no noise and so on. The magnetic levitation system needs the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper gives a controller design method of magnetic levitation system which satisfies the given $H_{\infty}$ control performance and the robust stability of the presence of physical parameter perturbations. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF

The Robust Control of Two Mass Spring System (2관성 공진 시스템의 강건제어)

  • 조도현;이종용;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.76-86
    • /
    • 1998
  • The Two-Mass Spring(TMS or Two-Inertia Resonance) system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. In this paper, we compared and considered with the state feedback effects for the TMS system. By connecting each controller design to the state feedback control, we could predict each controller performances and decide weighting functions and parameters of LQ and $H_\infty$ controller.

  • PDF

A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed (선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구)

  • Kim, Young-Bok;Chea, Gyu-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle (횡방향 거동 특성을 고려한 부하모사 시스템 해석)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.621-626
    • /
    • 2019
  • The driver's steering wheel maneuver is a typical disturbance that causes excessive body motion and traveling instability of a vehicle. Abrupt and extreme operation can cause rollover depending on the geometric and dynamic characteristics, e.g., SUV vehicles. In this study, to cope with the performance limitation of conventional cars, fundamental research on the structurization of a control system was performed as follows. Mathematical modeling of the lateral behavior induced by driver input was carried out. A controller was designed to reduce the body motion based on this model. An algorithm was applied to secure robust control performance against modeling errors due to parameter uncertainty, $H_{\infty}$. Using the decoupled 1/4 car, a dynamic load simulating model considering the body moment was suggested. The simulation result showed the validity of the load-simulating model. The framework for a lateral behavior control system is proposed, including an experimental 1/4 vehicle unit, load simulating module, suspension control module, and hardware-in-the-loop simulation technology.

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

A robust noise rejector in a small cavity

  • Seo, Suk-Bong;Ahn, Woo-Hyun;Chung, Tae-Jin;Chung, Chan-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.115-118
    • /
    • 1996
  • This paper studies on an active noise control to reduce noise sound level in a small cavity. Ideally, high gain control solves this problem, but, in practice, there exist nonlinear characteristics and modelling errors of the small cavity, which make the control more complicated. H$_{\infty}$ control can be used in an uncertain system after determining uncertain boundary and solved algebraically or numerically. In this paper, the numerical one, LMI(Linear Matrix Inequality), is used to get controller. Finally, experiment result shows the performance of the controller..

  • PDF

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on $H_{\infty}$ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response

  • PDF

$\mu$optimal controller design using equivalent weighting function (동등하중함수를 이용한 $\mu$-최적제어기 설계)

  • 방경호;이연정;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.65-71
    • /
    • 1997
  • In this paper, we propose a new .mu.-controller design method using an equivalent weighting function $W_{\mu}$(s). The proposed mehtod is not guaranteed to converge to the minimum as D-K and .mu.-K iteration method. However, the robust performance problem can be converted into an equivalent $H^{\infty}$ optimization problem of unstructured uncertainty by using an equivalent weightng function $W_{\mu}$(s). Also we can find a .mu.-optimal controller iteratively using an error index $d_{\epsilon}$ of differnce between maximum singular value and .mu.-norm. And under the condition of the same order of scaling functions, the proposed method provides the .mu.-optimal controller with the degree less than that obtained by D-K iteration..

  • PDF

A dynamic game approach to robust stabilization of time-varying discrete linear systems via receding horizon control strategy

  • Lee, Jae-Won;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.424-427
    • /
    • 1995
  • In this paper, a control law based on the receding horizon concept which robustly stabilizes time-varying discrete linear systems, is proposed. A dynamic game problem minimizing the worst case performance, is adopted as an optimization problem which should be resolved at every current time. The objective of the proposed control law is to guarantee the closed loop stability and the infinite horizon $H^{\infty}$ norm bound. It is shown that the objective can be achieved by selecting the proper terminal weighting matrices which satisfy the inequality conditions proposed in this paper. An example is included to illustrate the results..

  • PDF