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Abstract

In this paper, we propose a new g -controller design method using an equivalent weighting function
W,(s). The proposed method is not guaranteed to converge to the minimum as D~K and x«-K iteration
method. However, the robust performance problem can be converted into an equivalent H”
optimization problem of unstructured uncertainty by using an equivalent weighting function W(s).
Also we can find a pg-optimal controller iteratively using an error index 4. of difference between

maximum singular value and #-norm, And under the condition of the same order of scaling functions,
the proposed method provides the u-optimal controller with the degree less than that obtained by D-K

iteration.
formulated in terms of a singular value frequency
I . Introduction domain inequality on the closed loop transfer
Maintain bil . N ‘ function '
intaini stabilit 1 the resence o . . .
amtaming nty i P Recently, the issue of multiple modeling

uncertainty has long been recognized as the crucial
requirement for a closed loop feedback system.
Classical designers developed the concepts of gain
and phase margin to quantify stability -robustness
measure. In the modern control era, criteria for
maintaining closed loop stability in the presence of

a single unstructured uncertainty have been
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uncertainties appearing at different locations in the
feedback loop, and the related requirement of
performance-robustness, has been addressed ',
blocks and
performance specifications give rise to so-called
A

framework, based on the structured singular value
f1

Multiple unstructured uncertainty

structured  uncertainty. new  analysis

#, has been proposed by Doyle to assess the
stability and performance robustness of linear time
invariant feedback systems in the presence of

structured uncertainty. The design of a feedback
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system that exhibits closed loop stability and
performance in the face of structured uncertainty
is the so-called
synthesis approach proposed by Doyle is an

u-synthesis problem. The
iterative scheme, referred to as D-K iteration, that
involves a sequence of scaled H™ based feedback
design problems.

Another approach, x-K iteration is also used in
scheme,

design. This iteration

proposed by Linm, is motivated from the

p-controller

observation that the z-optimal controller tends to
flatten the p-curve at least over the bandwidth.
And this method is to determine a sequence of
controllers which: yields a flat structured singular
value. This after all is what happens in H™
optimization where the H”-optimal controller
results in a cost function with a flat maximum
singular value. However, the result of a x—optimal
curve plot does not always guarantee flat shape.

In this paper, we propose a new g-controller
design method using an equivalent weighting
function W,(s). The proposed method does not give
an analytic solution, therefore we design a
controller using iterative schemes as D-K iteration
and ¢-K

performance problem can be converted into an

iteration. However, the robust
equivalent H” optimization problem by using a
proposed method. Also we can find an z-optimal
controller using an error index 4. of difference
between maximum singular value and z-norm.
The organization of this paper is as follows:
Section II discusses the analysis of g-synthesis
and D-K iteration and section III gives a main
results of the proposed method. In section IV, for
convenience of comparing with D-K and #-K
iteration, we take the SISO case design example
and get good results. Finally, conclusions are

given in section V.

II. Preliminaries

The block diagram in Figure 1 is the standard

TS s

framework for considering the robust feedback
design problem. The diagram represents any linear
interconnection of inputs, outputs, perturbations,
and a compensator. G is the known model that
contains the plant to be controlled and K is the

compensator to be designed.
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Fig. 1. General framework for the robust
feedback design problem.
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Fig. 2. Analyzed block diagram.

The synthesis objective is to find a K to achieve
nominal stability and performance of the feedback
loop and to provide robustness with respect to the
modeling error. In Figure 2, M represents the
lower linear fractional transformation of G closed
by K,

M=FA(G, K)=[Gy +GuK(U—~GpK)'Gyl. (1)

4 is an #nxa Dblock diagonal matrix of
perturbations representing uncertainty except for
one block which is used to characterize
performance. Mathematically 4 is an element of

the set

4: ={diagl 8,J,.-.8J,. 1., 4], 8eC, 4=C ™™}
(2)
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where s is the number of repeated scalar blocks, f
is the number of full blocks, € 1is the set of

complex and

glri+l§ﬁ]mj=n . (3)

Definition 1 2.

The structured singular value of M, g (M), is
defined such that #7'(M) is equal to the smallest
o(4) needed to make (J+ M) singular, ie.,

22 (M) = min {o(J)| det ( I+ M = 0},

(4)
4= B4

where B4 is a norm bounded subsets of 4, defined
as

BA= {de 4 dH<1). (5)

If no de B4 exists such that det( I+ Md4) =0, then
1AM)=0.
Obviously, # is a function of M which also
depends on the structure of 4. However, definition
1 is not typically useful in computing # since the
implied by it does not appear to be easily solvable.
Fortunately, several properties of « can be proven
which make it a powerful tool for applications. For
better understanding, some important properties of

¢ are described here without proofs.

Lemma 12!,

(1) ﬂa(km = lklﬂd(m (6)

(2) o M) < p (M) < o( M) (7

max p( UM) < 11 (M) < inf ol DMD ™)

ve U beD

(3 (&

where U={U=sd:UU=1)}
D={diag [Dy, . Dy, d\ I, de 1, 1:DeC """ D=
D;>0,d;eR,d»0} and p is a spectral radius, o is
a maximum singular value, and R is the set of real
numbers.

The p—synthesis problem is to find controllers
K which stabilize the general plant G and

minimizes the worst case value of u,(F (G, K)(jw),

E=
B

(67)
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ie.,

inf sup 125 (Fi(G, K)je)

K weR

9

Unfortunately, due to the inherent non-convexity
of the problem, the complete solutions to this
problem are still not available. However D-K
iteration method provides itself with an efficient
way of synthesizing robust performance controller.
This numerical approach, based on the upper
bound of # in (8), is proposed by Doyle, which
replaced (9) with the following two-parameter

optimization problem.

inf sup inf o(D(jw) (F,(G, K)jw)) D" (Gw))(10)
K we R beD
One method to solve the above problem is to

alternatively minimize the norm |DF{(G, K)D '}
for either K or D while holding the other constant.
For fixed D, this reduces to an H”optimization
problem and can be solved by various methods.
When K is fixed, the optimal scaling- D can be
derived since the function is convex in D. A curve
fitting routine can be used to construct a stable,
minimum phase rational D when the scalings at

each frequency are available.

17, (Robust performance condition)

Theorem
The robust performance is achieved if and only
if w4 M) with respect to the structured uncertainty

4 B4, satisfies

1AM, (11)

Theorem 1 may be interpreted as a ’generalized
small gain theorem’ which also takes into account

the structure of 4.

M. Main results

The proposed method is originated from the
following observations. For any non-singular
constant matrix NeC ™", with a structured
uncertainty, one can always find a corresponding

scaling factor >0, such that



2AN) = ka(N) = s (kN) 12)

where % can be chosen as k= u (N} /u, (N, ds= 4
is a full block uncertainty with same dimensions of
4. The above equation implies the facts that; for
any non -singular constant matrix N, we can find
an equivalent unstructured uncertainty Jz= k4,
such that

#A(M = /-‘A,;(M~ (13)

Equation (13) can be also be applied to any H”
norm bounded transfer function matrix M(s) by
proper choice of an equivalent weighting function

W,(s) to derive the following results,

/‘A(M(fwo)) = #AE(M(jOJo)) (14)

where we have wused the N=M(jw) and
dg=| W, (jwy)lds. Therefore, for any norm bounded
transfer function M(s)e RH”, we can find a stable
rational transfer

minimum-phase real scalar

function W,(s) € RH”, such that

pAMGo) = | WGl s MGw) = o W, Go)M(w)) (15)

holds for every frequency points of interests. W, (s)
can be found by fitting the magnitude curve of

1A M)

(M) (16)

| W.(iw)| =

by a stable, minimum-phase, real rational transfer
function. Assume that K, represents the optimal
controller of p-synthesis problem, then by the
above discussions, we can find an equivalent

weighting function W,,{G, K., such that

uF (G, Kp))jw)

AF G Ko an

| W/mpr( G, Kupt)(j(v)l =

or equivalently
2L FG, Kyd))jw) = o W,on (G, Ko F1(G, Koy iw)(18)

at every frequency points of interests. According

to the equation (15), we can rewrite equation (9) as

inf sup r,(F,;(G, K)(jw) = inf sup ol W,F(G, K))jw)
K weE R K
(19)

we R

FEAFTTE ol 8T p-HAA) HA

(68)

TrEwE st

The function

depends on the general plant G and the controller

equivalent weighting W.(s)
K. The exact solution of equation (19) cannot be
obtained analytically, so we propose an iteration
method using an error index with a wide enough

range o, ~w, as follows.

de= f’ AMG@) — A M(jw))dew (20)

In many examples, it can be observed that the
optimal x4 M curve tends converging to the
optimal o(M) curve at interested frequency range.
A Mjw))

in the optimization

Therefore, difference between and

1A M(jw)

procedure. If 4. does not decrease, then designed

are minimized

x—controller is optimal, equivalently | W, (jo)l~1. In
applying to proposed method, we can finish the
iteration from error index d..

Based on the above discussion, we propose the

following iteration method.

Step 1. Design a stabilizing H* optimal controller.

K, inf || F,(G, Kl (21)

K
Step 2. Find a x—curve over a wide enough range
( (u1~w2).

/11(jw) = #A(FI(G, Kl))(]w) (22)

Step 3. Find a maximum singular value curve

over the same range.

71(j0)) = E(F/(G' Kl))(](/)) (23)

Step 4. Calculate the difference between 7,(jw)

and p (o).
do = [ 1oF(G, K)Xa) = ns FAG. KDGldo  (24)

Step 5. Compute an approximate | W, (jw)l curve.

#J(jw)

71(j(0) (25)

| W,‘L(jw)l =

Step 6. Find a stable minimum-phase scalar

rational function W, (s) by step 5.

Step 7. Design a stabilizing H”optimal controller.
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Ky = inf|| W, (s) F(G, Kl (26)
K 12 e —
max singular value
Step 8. Continue doing step 2~6 to n-th iteration W
as follows.
08t {
K= infl| W, \W,i_y WauW, F (G, Klle (27
" ‘ oef 4
#i(jw) = #A(FJ(G, Ki))(jd)) (28)
oaf
- bound:
7{50) = AW,y Waim- W W Fi(G, K))w)  (29) e
0?01 ‘O “‘1—‘ ‘_M‘_‘E]Z 3 +
@ 10 10 1 10 10
dei= L‘ l7iw) — ¢ {Gw)ldw (30) Frequency (radis)
Step 9. If 4. does not decrease, then stop the (a) ¥HE- A

iteration. (a) Before iteration

The convergence of this method relies on the

accuracy of curve fitting W,(s) and on the

calculation of structured singular values for wide 08

enough range frequency. max singular value

0.8[»

mu bounds

IV. Example Oﬁ

This section presents a simple design example to 02y

illustrate the proposed method. To simplify

0 e s .
10" 10° 10 10° 10

simulation, we take the single input single output Frequency (radis)

model from reference'®'.

(b) 13] ¥HE ¥

a=["251], B= [[1)] Cc=[-05 —0.5), D=1[0] (b) After first iteration
(3D
The objective of this design problem is to 11‘3"5'”9“'9”3'“9
synthesize controller such that the output ogl MEOUNIE
disturbance rejection requirements is satisfied in
the presence of input multiplicative uncertainty oey
(Fig. 3), by which means, we have to solve robust 0al
performance problem.
02t

0 " "
10? 10" 10° 10 10° 10°
Frequency ({rad/s)

(c) 23] WH& ¥
(c) After second iteration

a7 4. Alkgt ubge} i Ee]xe} 4-plot

a8 3. %Y ol -2 AAAASEA Fig. 4. Maximum singular value and g -plot of
Fig. 3. A SISO robust performance problem. proposed method.

(69)
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33 5. D-K uhE#e] HojSo|x9}t u-plot 28 6. p-K ubERe] HSo[xet p-plot
Fig. 5. Maximum singular value and g -plot of Fig. 6. Maximum singular value and g -plot of
D-K iteration. ¢ -K iteration.
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The simulation is implemented by Matlab and « equivalent H* optimization problem. To find a &«
~Toolbox '*!. The proposed method was carried -optimal controller, we use an error index d. in the
out as described in section III, and the simulation procedure of iteration. The accuracy of proposed
results are shown in Figure 4. Figure 5 and Figure method depends on curve fitting of the equivalent
6 represent a maximum singular value and x-plot weighting function W,(s).
in results using D-K iteration and ¢-K iteration,
respectively. 202 35
From Fig. 4, Fig. 5, and Fig. 6, we know that
the closed loop system satisfies robust [1] ] C. Doyle and G. Stein, “Multivariable
performance condition, therefore three methods feedback design: Concepts for a
give good results in g-synthesis of robust classical/modern synthesis,” IEEE Trans.
performance problem. Of course the proposed Automatic Control, vol. AC-26, pp. 4-16,
method is less systematic than D-K iteration due Feb. 1981
to the accuracy of curve fitting W,(s). However, if (21J. _C' Doyle, “Analysis of feedback"systems
] . . with  structured  uncertainties, IEE
we find an accurate W,(s) in a single step, we can Proceedings, vol. 129, part D, no. 6, pp.
design a z-optimal controller without iteration. 242-950, Nov. 1982.
Also, under the condition of the same order of [3]1]. C. Doyle, J. E. Wall, and G. Stein,
scaling functions, the proposed method provides “Performance and robustness analysis for
the optimal controller with the degree less than structured uncertainty,” Proc. IEEE Conf
that obtained by D-K iteration. Conclusively, we on Decision and Control, Orlando, FL, pp.
can transform a g-optimal controller design 629-636, 1982.
problem into an H”-optimal controller design {41 J. C. Doyle, “Struc,t,ured uncertainty in
problem by using equivalent weighting function cont‘ro.l system design,” Proc. IEEE Conf. on
W,(s), and the effectiveness of this fact shows in Decision and Control, Fort Lauderdale, FL.
o pp. 260-265, 1985.
error index d.. [5] J. L. Lin, L. Postlethwaite, and D. W. Gu, “ «
-K iteration: A New Algorithm for g
V. Conclusions -svnthesis,” Automatica, vol. 29, no. 1, pp.
This paper proposes a new method of robust 219-224, 1993.
performance problem in feedback systems with a [61G.J. Balas? J Doyle, K. GIOYer’ A Packarc'L
) ) ) and R. Smith, The u-Analysis and Synthesis
structured uncertainty. For this, we motivate the Toolbox, Math Works and MUSYN, 1991.
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using the ratio of _%2%?%’ and transform Optimal Control, Prentice Hall, 1995.
the robust performance problem into the
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