• Title/Summary/Keyword: $H^\infty$control

Search Result 704, Processing Time 0.033 seconds

Robust $H_{\infty}$ Control for Uncertain Two-Dimensional Discrete Systems Described by the General Model via Output Feedback Controllers

  • Xu, Huiling;Zou, Yun;Xu, Shengyuan;Guo, Lei
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.785-791
    • /
    • 2008
  • This paper considers the problem of robust $H_{\infty}$ control for uncertain 2-D discrete systems in the General Model via output feedback controllers. The parameter uncertainty is assumed to be norm-bounded. The purpose is the design of output feedback controllers such that the closed-loop system is stable while satisfying a prescribed $H_{\infty}$ performance level. In terms of a linear matrix inequality, a sufficient condition for the solvability of the problem is obtained, and an explicit expression of desired output feedback controllers is given. An example is provided to demonstrate the application of the proposed method.

The Robust Controller Design for Lateral Control of Vehicles (차량의 횡방향 모델에 대한 강인 제어기 설계)

  • 김은주;하성기;정승권;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.496-499
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the H$^{\infty}$ scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, LQG/LTR and H$^{\infty}$ Controller Design of Lateral Control System for an Automobile is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the H$^{\infty}$ controller provides more robustness property for the disturbances and lower control input.

The Robust Controller Design for Lateral Control of Vehicles (차량의 횡방향 모델분석 및 제어기 설계)

  • 김은주;하성기;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.318-321
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the H$^{\infty}$ scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, LQG/LTR and H$^{\infty}$ Controller Design of Lateral Control System for an Automobile is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the H$^{\infty}$ controller provides more robustness property for the disturbances and lower control input.

  • PDF

Two-Degree-of-Freedom Control of Two-Mass Resonant System using $H_{\infty}$ Filer ($H_{\infty}$필터를 이용한 2관성 공진계의 2자유도제어)

  • Kim, Jin-Soo;Kang, Seok-Jin;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.515-517
    • /
    • 1997
  • In the industrial motor drive system, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. In this paper, two-degree-of-freedom(TDOF) control of the two-mass resonant system using the $H_{\infty}$ filter is proposed. TDOF control method satisfies the command following property and the internal stability at the same. The $H_{\infty}$ filter is robust in noise and disturbance. Simulation results show the validity of the proposed control method.

  • PDF

Two Degree-of-Freedom $H_{\infty}$ Controller Design and Simulation For the Lateral Control of the Vehicle (차량 횡 방향 제어를 위한 2 자유도 $H_{\infty}$제어기 설계 및 모의실험)

  • 장재필;정길도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.112-112
    • /
    • 2000
  • The aim of this paper is to design a two degree-of-freedom H$_{\infty}$ controller for lateral control of the vehicle. The object of this controller is to track the centerline of the reference lane. The controller is splited into two parts, feedback and prefilter. The feedback part is for both robust stability and disturbance attenuation, while the prefilter is for improving the robust tracking properties of closed loop system. This paper is consist of preface, background theory, dynamics of vehicle, controller design and computer simulation.ter simulation.

  • PDF

Design of H_{\infty} Control for Uncertain Linear Systems with Eigenvalue Assignment Constraint in a Disk (원판내 고유치 배정 조건을 갖는 불확정성 선형 시스템의H_{\infty}제어기 설계)

  • Ma, Sam-Seon;Kim, Jin-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.520-525
    • /
    • 2000
  • This paper deals with the design of H$\infty$ control for uncertain linear systems with the regional eigenvalue assignment constraint. The considered region is a disk in the left half plane and the two types of time-varying uncertainties are considered. We presents a state feedback control that minimize the L2 gain from the disturbance to the measured output as well as it guarantees that all eigenvalues of closed loop are inside a disk. The state feedback control is obtained by checking the feasibility of linear matrix inequalities (LMI's) which are numerically tractable. Finally we give an example to show the applicability and usefulness of our results.

  • PDF

H Fuzzy Control for Discrete-Time Nonlinear Markovian Jump Systems with Time Delay (시간지연을 갖는 이산 비선형 마코비안 점프 시스템의 H 퍼지 제어)

  • Lee, Kap-Rai;Lee, Kyung-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.779-786
    • /
    • 2009
  • This paper deals with $H_{\infty}$ fuzzy control problem of discrete-time nonlinear Markovian jump systems with time delay. The Takgi and Sugeno fuzzy model is employed to represent a delayed nonlinear system that possesses Markovian jump parameters. A stochastic mode dependent Lyapunov function is employed to analyze the stability and $H_{\infty}$ disturbance attenuation performance of the Markovian jump fuzzy system with time delay. Stochastic Lyapunov function is dependent on the operation modes of the system. A sufficient condition for the existence of fuzzy $H_{\infty}$ controller are given in terms of matrix inequalities. Also numerical example is presented to illustrate the efficient of the proposed design methods.

Output Feedback Robust $H^infty$ Control for Uncertain Fuzzy Dynamic Systems (불확실성을 갖는 퍼지 시스템의 출력궤환 견실 $H^infty$ 제어)

  • Lee, Kap-Lai;Kim, Jong-Hae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.15-24
    • /
    • 2000
  • This paper presents an output feedback robust H$\infty$ control problem for a class of uncertain nonlinear systems, which can be represented by an fuzzy dynamic model. The nonlinear system is represented by Takagi-Sugeno fuzzy model, and the control design is carried out on the basis of the fuzzy model. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H$\infty$ controllers are given in terms of linear matrix inequalities(LMIs). Constructive algorithm for design of robust H$\infty$ controller is also developed. The resulting controller is nonlinear and automatically tuned based on fuzzy operation.

  • PDF

H_{\infty} Control Synthesis for Power System Design using LMI Optimization Method (LMI 최적화기법을 적용한 $H_{\infty}$제어 시스템의 전력계통 안정화장치(PSS) 설계)

  • Jeong, Dae-Won;Ju, Un-Pyo;Kim, Geon-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.165-174
    • /
    • 2000
  • This paper presents the application of H$\infty$ control synthesis using LMI optimization method to power system stabilizer(PSS) design. Since power system is usually operated under circumstance of unmeasurable uncertainties and external disturbances, the improvement of small signal stability becomes one of the most important issue for securing system stability and preventing low frequency oscillation phenomena. The LMI optimized H$\infty$ PSS provides robust performance and guarantees the internal stability under these operating conditions. The global optimal H$\infty$ norm is found using LMI convex optimization method which is more systematic than standard two Riccati solution method. The design results are simulated for a case study. We verified that the LMI method shows the best performance characteristic smong standard Riccati method and conventional lead/lag method.

  • PDF

A design on model following optimal boiler-turbine H$\infty$control system using genetic algorithm (유전 알고리즘을 이용한 모델 추종형 최적 보일러-터빈 H$\infty$ 제어시스템의 설계)

  • 황현준;김동완;박준호;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1460-1463
    • /
    • 1997
  • The aim of this paper is to suggest a design method of the model following optimal boiler-turbine H.inf. control system using genetic algorithm. This boiler-turbine H.inf. control system is designed by applying genetic algortihm with reference model to the optimal determination of weighting functions and design parameter .gamma. that are given by Glover-Doyle algornithm whch can design H.inf. contrlaaer in the sate. space. The first method to do this is ghat the gains of weightinf functions and .gamma. are optimized simultaneously by genetic algroithm. And the second method is that not only the gains and .gamma. but also the dynamics of weighting functions are optimized at the same time by genetic algonithm. The effectiveness of this boiler-turbine H.inf. control system is verified and compared with LQG/LTR control system by computer simulation.

  • PDF