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Abstract - This paper presents the application of H. control synthesis using LMI optimization method to power
system stabilizer(PSS) design. Since power system is usually operated under circumstance of unmeasurable uncertainties
and external disturbances, the improvement of small signal stability becomes one of the most important issue for
securing system stability and preventing low frequency oscillation phenomena. The LMI optimized H. PSS provides

robust performance and guarantees the internal stability under these operating conditions. The global optimal H, norm
is found using LMI convex optimization method which is more systematic than standard two Riccati solution method.
The design results are simulated for a case study. We verified that the LMI method shows the best performance
characteristic among standard Riccati method and conventional lead/lag method.
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1. Introduction

The stability of
synchronous machine operation has attracted a great deal
of attention in the field of modern power systems. Power
system stabilizers (PSS) have been widely used in
electric power industries to improve this small signal
stability. Through the supplementary control of an
excitation system and governor system, PSS can suppress

phenomenon of small signal

low frequency oscillations of a small magnitude and
provide extra damping for synchronous machines under
uncertain operating The design of the
conventional lead/lag filtered PSS was first proposed in
the 1960s and was based on the classical linear control
methodology. Each PSS is tuned around one operating
condition for providing adequate performance within a
certain range of limitations. It has also been found that
dynamic properties of power systems are quite different

conditions.

for various operating conditions. The major disadvantage
of conventional PSS is that overall system stability can
not be guaranteed effectively in the circumstance of
varying operating conditions. A lot of research works

have been carried out to overcome the kinds of
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challenges caused by varying operating conditions
including system uncertainties. Most researches are
mainly based on the traditional design methodology such
as eigenvalues (pole) assignment [1], and modemn ones
such as self-tuning control technique(2, 3], etc. However,
H, optimization synthesis[4] has been developed as a
way to handle the uncertainties and has achieved robust
performance. Robustness requirements in power system
control are directly related to improving the small signal
stability such as small magnitude and low frequency
oscillation problems. Some research on applying He
control synthesis to design PSS has also been presented
in some publications and papers [5-9]. These publications
have shown that H. controllers can effectively maintain
the stability and performance of the system for a wide
range of operating conditions in spite of the presence of
uncertainties and external disturbances in the system.
Some of the publications reported the importance and
difficulties in the selection of the weighting functions
which might have an effect on system performance. This
gives us the motivation to study new methods. In this
paper, we investigate to design PSS with H, control
synthesis using linear matrix inequalities (LMI) constraint
optimization technique. The LMI can effectively find the
minimum H. norm by convex optimization technique and
be free from singular problems, whereas the solution of
two algebraic Riccati equations is just a trial and error
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method to find optimal H, norm and still needs to
adjust weighting values of system matrices for
non-singularity conditions. With the LMI method, it was
also found that it is not necessary to know the exact and
correct function of weighted filters but the roll-off and
frequency band of the inverse of its magnitude in a
certain frequency region are more important to attenuate
external  disturbances and noises. The detailed
mathematical background, proofs and algorithms may be
found in other publications shown in the References
[10-12]. The H. PSS depends on information available
only at plant outputs such as terminal voltage and
angular speed, thus, the design implementation is very
simple and easy in the practical sense. Design results
are simulated for a case study and check the system
performance in comparison with currently operating
lead/lag PSS and H, PSS of standard two Riccati

equations method.
2. Description of System Model

We briefly reviewed and derived the linearized power
system model for low-frequency oscillation study in
which a turbine-generator machine is connected to an
infinite bus through double circuit transmission lines
having a main step transformer and external impedance
as shown in Fig. 1.

7L Ve

governor

Fig. 1 System configuration of a turbine generator with infinite

bus

Small signal stability problem will mostly happen in
cases where a remote generation station sends a
largeamount of power to a major power system through
a relatively weak transmission line. This situation is
adequately modeled by a single-machine infinite bus
system. This model itself contains many uncertainties
because not only is the network approximated as an
infinite bus, which is assumed to be an external
disturbance to the plant, but also a turbo-generator is
simplified such that the fast dynamics are mostly
neglected and time delayed dynamics are ignored.

The simplified generator model known as Park's
two-axis machine model is used to describe the generator
dynamics [13]. The excitation system is simply
represented by the first order differential equation
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expressed in equation (5). The linear, time-invariant
nominal design model, G is obtained by linearizing
around the nominal operating points shown in Fig. 2 and

are expressed in the following equations;
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Fig. 2 Block diagram of linearized power system of Fig. 1
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where all variables and constants for this study are
expressed in per unit values and the symbols and main
nomenclatures are defined in the Reference [13,14]. The
linearized 5th order state variables and input variables are
selected as ;

2 D=[4T (D, (D, 480, 4E; (1), AE D] (N
w(D=[UD, 4Us )] (8

3. System Perturbation and Robustness
Requirements

3.1 System Perturbation Representation

Generally, system perturbation which is a source of
system instability occurs mainly due to either system
uncertainties or external disturbances. In this section, we
discuss briefly the system uncertainties of two categories;



dynamical uncertainties and parameteric perturbations.
Dynamical uncertainties appear dynamically to capture the
effects of unmodeled dynamics such as neglecting the
fast dynamics, invalid assumptions and model reduction.
The problem for representing these uncertainties
mathematically is that since the actual plant can never be
known exactly, we cannot describe them mathematically
in detail. Therefore, we adopt a set of membership for
the uncertainties representation whose idea is to define a
bounded set of system transfer function matrices. They
are represented as the multiplicative uncertainties which

G(s) and

nominal plant Gy(s) given as norm bounded, frequency

have a relationship between actual plant

domain error with the following form ;
G(9=1{G(s) | G()=[I+ WMHANIG(D, 14wl < 1} (9)

where, W(s) is the which
encapsulates the system certain
frequency range in which the uncertainty most likely
occurs and J4(s) is normalized to ||4(jw)lle < 1. And,

W(s)A(s)=80(s)=—(—;(-s)G;(+(s) is known as normalized

weighting  function

variation over a

multiplicative error with respect to the nominal plant
model. Since the H, norm of A(jw) is bounded by 1

and the phase and direction of A{(jw) are allowed to vary
arbitrarily, the uncertainties are contained in a bounded
radius hypersphere | W{jw)| at each frequency.

Therefore, | W{jw)l may be seen as a frequency-
dependent magnitude bound on these uncertainties as
shown in Fig. 3. We can also consider the parametric
perturbations whose dynamic behavior are defined by a
set of operating parameters (for example ; K,---, Ky in
the equations (1) to (5). In turn they are expressed as
subject to change in the following equation (10) due to
the parametric perturbations;

Ky (1 8 (K Koi(1+8x) or K;=Ky(I+ Wud)  (10)

where Kj; is the nominal value of the system

parameter and &% is the upper bound of its variation.
The class of this uncertainty may be described as
8i(s)= Wu(s) d(s)with d()eR | ||l4(jw)ll« < .1In Fig.
2 each of the individual parameters Kj,:*-, K¢ should be
replaced by its corresponding parametric uncertainties
which tell us how the dynamics of the power system
vary with different perturbations at various operating
conditions and how the perturbed parameters behave in a
way much closer to its real system. It is noted that the
parametric uncertainties can not only address the multiple
simultaneous perturbation but also preserve the structure
information of uncertainties, which can also be
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represented as shown in Fig. 3[15].
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Fig. 3 Block diagram of generalized uncertainties

3.2 Closed Loop Performance and Robustness
Requirements

3.2.1 Closed Loop System Description

The system uncertainties of Fig. 3 and external
disturbances can be simply obtained by conducting the
weighted function of input-output description as presented
in the single closed loop interconnections to the
generalized plant in Fig. 4. From Fig. 4, these can be
described by the following matrix transfer function form
of the multiple input and multiple output (MIMO)
systems;

(Z)=al)=(G () =(a (%) o
where, vy=4"* z4 and M=j—j=—(I+KG)_1K are

the input-output function signals and closed loop transfer
function as retrieved perturbation from the system
uncertainties, respectively. v, 2 are the generalized
external disturbances and controlled variables, andx,y
are control inputs and measured outputs, respectively. All
uncertainties may belong to a set 4 consisting of proper
and stable transfer matrices. The controlled and
uncontrolled interconnections are obtained as w=K-y
and vy=d- 2z, with [|d(jw)lle < ] respectively. This
leads to the linear frictional matrix transformation
form[15};
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Fig. 4 Block diagram of generalized control system model
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T.,=+GyK)~'W;- W, (12)
T gose= Wy GoK(I+ GyK) ! 13)

In order to setup the H. control synthesis, the closed
transfer function matrix (TFM) from the disturbance v
to the desired output =z is obtained by equation (12) in
Fig. 4 (note that
convenience) and TFM from input z4 to v, output as
seen by 4 is also obtained by equation (13). It is noted

that the system sensitivity TFM and complementary
sensitivity TFM for the nominal feedback system are

S=(I+GyK) 'and C= G,K(I+ G,K) ' respectively.

w,, wy; are assumed W, for

3.22 Robustness Requirements Against System
Uncertainties

By virtue of the small gain theorem[15,16], the internal
stabilization condition under the presence of system
uncertainties in equation (13) is given by the form of the

Hy norm as the sufficient condition;
TAvAz=“WAGOK(1+ GOK)_lllm < 1 (14)

Using the definition of the H, norm, an equivalent
condition for stability robustness is expressed as;

O max{ W j10) Go(j) K(jw) (I + Gy (jw) K(7w)) "} 1, Vw 2 0
(15)

O Gl Gol) K i) (I Go i) K(ju0)) ™K st . V20
(16)

Therefore, the system uncertainties may generally be
described as norm bounded and frequency dependent

uncertainties 8¢ around the nominal plant Gj in the

form of G(s)=Gy(I+ 8 In the sense that
Wy 86lle <1,  IIW,(w) 'l is considered as an
upper bound of system uncertainties. And, if we select a
scalar frequency-dependent weight as

W) M= ws(jw)~ ' - I=y-I and an H, controller that
achieves a specific value of 7, then, we can ensure that;

17 a)
7 b)

O mae [ Go () K(jw) (I + Go(juw) K(jw)) ™' 1<y, V w20

Gam w4 (0)] < % Vw >0

3.2.3 Robustness Requirements for External
Disturbance Attenuations

The a priori information about external disturbances is
always in the form of a certain frequency band in which
their energy is concentrated. These kinds of disturbances
can be expressed as a disturbance signal class of 4

which are weighted by a factor function WKs) such that
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the H, norm of |IW;'-d|; <1, which means that a
certain frequency band in which the disturbances are
mostly likely to be rejected. The disturbance attenuation
can be described as minimum output for the worst case
disturbance v in the above class. If we assume W,(s)=1
in equation (12), this is also equivalent to minimizing the
H,, norm of the weighted sensitivity function;

o=+ GK) "' W [l <1 or (18)
NSGwlle < TW%;E)T ,  Vwe{0,} 19)

Using the definition of the He norm, an equivalent
condition for stability robustness is also expressed as;

Omax{ (1+ Gy (jw) K(jw)) "' W3 < 1,
or
Smax{ (T4 Go (i) K(jw)) 71} <

VYw =0 20

1
W Y =0, @D

By the proper choice of scalar frequency-dependent
weights, Wy=w,(s)] an Hs controller that achieves a

specific value of 7y ensures that;

O ax [ (I+ GoGw) K(jw)) 711 < Yw (22

R 2
lw jw)|

4. LMI Optimized H.. PSS Design
4.1 H. Control Synthesis and Objective Function
The nominal feedback

uncertainties (4) and weighting filters ( W, Wy, W} in
Fig. 4 is applied to illustrate the fundamental concepts of

control system except

H, optimal control theory. The linear, time-invariant,
continuous-time dynamical system for the worst case

scenario may be considered with the following
state-space representation ;
()= Ax(D) + B,o(H + Byul(d) (23)

Z(t) = Clx( t) + Dul}( t) + Dlzu(t)
y(B = Cyx(D + Dyj(#) + Dyul(

where, xeR™ peR™ yepm™*l ;z ep?*l

yERﬁQ’(1 are state vector, exogenous inputs including
disturbances and measurement noise, control input vector,
regulated output, and measured output, respectively.

A€R™" is the system matrix, B,€R™™ is the
exogenous input matrix, C,€R®*"is the control input
matrix, C,eR?*" is the

DHERﬁlxml

measured output matrix,

is the regulated direct forward matrix,



DpeR”™ is the regulated direct forward matrix,
DyeR®™ is the output direct forward matrix, and
DpeR®™ is the output direct forward matrix. We wish
to seek a linear, time-invariant, continuous controller of
order 7z to reduce the effects of disturbances to the
output and at the same time to enable the system to
remain internally stable in the presence of system
uncertainties of the form;

K{ (D) =A%)+ Bp(d (24)

u(H=Cix()+ Dy( D)

where x(f)€R"is the controller state vector. And it is
equally expressed as the closed-loop transfer function
matrix form;

(s)=K(s)Y(s)
where K(s)= Ci(sI—A) "'By+ D, (25)

The basic idea of the H, optimization problem is to
minimize the ||7(w)||- which deals with the peak value
of a certain closed-loop frequency response of a
concerned system. In other words, we are to design a
PSS controller to have the internal stabilizing and robust
performance against the presence of both parametric
perturbations and dynamic uncertainties and the worst
case disturbances. The disturbances are considered to be

an unknown but bounded L, signal. The object function
of H, optimization problem from equation (22) is

expressed such that;

J = Min || Tl (26)

=Y Find s:f’ O ( Too (Jw)) < 7

where || T, lle is the infinity( o0)-norm of the closed
loop function from the exogenous input variable v to
controlled variable z at a certain frequency, O, is the
maximum singular value of this norm, and 7 is the
positive scalar value to determine as an index of
boundness of the Ho norm. Where the energy gain(7)

of the closed loop system is analogously defined as the
peak-to-peak gain in the following definition [15];

_ sup HZ”z _ sup . _ sup .
r= 0<iloll5¢ 00 M, = weR Omadd T (W)= wER“Tzu(Jw)”
@n

This means that the energy gain of stable linear
time-invariant system is just equal to the He norm of

the corresponding transfer matrix 7=[|T,ll The closed

LMl =87 e 8 HB83 He MOl AlAHS MAAE oY sZx|(PSS) €
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loop transfer function T, including the central controller

from the exogenous input v to the regulated output z is
obtained as [15,16];

T, ()= %((g)l= D+ CAsI-A) By n  (28)

where Ag= (A +B€2é2)/zc2 B}‘flz) . Bu= (31 +BB22kD21),

Ca=(C\+DpDiC; DiCyH D= Dy + DypDyDy

42 Choice of Weighting Functions

From equation (17 b) the weighting function W;'(s)
should be selected to be less than the H, norm value
() of control objective function given by equation (26)
for robustness performance against system uncertainties.
Whereas W{s) should be selected to attenuate all external
disturbances (d,#) by maintaining a gain balance
between the sensitivity function and the complementary
sensitivity function. This means that the sensitivity
function( S) may be made small at low frequency ranges
for robustness against low frequency disturbances(d) and
the complementary sensitivity function( C) may be made
small at the high
high-frequency noises( #). Then, a trade-off is needed
between S(s) and C(s), ie, S(s) is minimized at the
low-frequency ranges while C(s) is minimized at the

frequency ranges  against

high-frequency ranges since C(s) and S(s) cannot be
simultaneously minimized due to S(9+AH=1. A
methodology for control system design consists of
determining appropriate bounds on S and C, and adding
a compensator to the plant to shape S and C in a such
a way that they remain with the set bound, which is the
so called “loop shaping” problem [16, 18].

Ideally, a comprehensive uncertainty and disturbance
analysis should be made under all possible operating
conditions to obtain precise information about system
variation. However, the design problem for the worst case
scenarios is that since the actual and perturbed plant can
never be known exactly, the focus should be made to
find the guaranteed smallest perturbation level that will
de-stabilize the given system. In order to meet the
above requirements by considering system frequency
response in equation (22), the loop shaping specification is
made by the followings.

- For external disturbances rejection, the gain of S(s)
should be minimized as much as possible at low
frequency ranges.

- For sensor noises suppression, the roll-off of C(s)
gain should be approximated as —40dB/decade and
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the gain should be less than —204dB at
w=100rad/ sec.

This specification is plotted as desirable frequency
response shape in Fig. 5. The weighting functions( W,, W,)
should be selected in such a way that they remain within
the set bounds by adjusting H. norm value (7) to
envelope the above specification curves of sensitivity and
complementary sensitivity functions, respectively. As per
the equation (22) they are found to be equation (29)
which are shown Fig. 6 and 7 in this design ;

Wi 9=y ((F0D 0 )

0 (s+0.01)
oo [T o
W, (9= ¢ (29)
1000
0 &

e eenda

P\ Y PR R

A Wk RGNS

Fig. 6 Loop Shaping Plotsi Wy w) (upper curve) and
S(w) (lower ones) curves by adjustng y=1 to
y=3.2
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si  W,'(w) (upper curve) and
C(w) (lower ones) curves by adjusting y=1 to
r=3.2

43 LMI H.-norm Optimization

The standard H,-norm optimization using the two
Riccati equation solution method was originally developed
by S. Doyle and K. Glover{4]. This is just a trial and
error method to find the optimal 7 such that two Riccati
equations must be solved to avoid the singularity
conditions of these equations. Furthermore, this still needs
to consider weighting values to either satisfy design
requirements or to satisfy the necessary feasibility
conditions. Therefore, we approached to find the minimum
He norm (9 value using LMI convex optimization
method. This LMI is efficiently computed and solved by
the interior-point algorithm(12, 15].

By the virtue of the Bounded Real Lemma [11,15],
A is stable (internal stability) and the H, norm of T,,
is smaller than 7 if and only if there exists a symmetric
X, > 0 with ;

AX g+ XAy X By Ch
BIx, —yI DI <0 (30)
Cd Dcl - 71

The unknown matrices are the LMI solution (X, ) and
controller matrices entering to A, B., C, and D, Hence,

this can be reduced to an LMI problem by elimination of

controller matrices. With the notation of 6‘=(‘g* g:), the
&

inequality (30) is written as;
Z+PT5,Q+ Q5P < 0 (31

where the matrices Z,P and @ depend only on X,
and the plant data. The elimination of the variable &, is
addressed by the following Projection Lemma [10].



Lemma 4.1 (Projection Lemma [10])

ZeR™" and two

matrices P and @ with column dimension m. Let Wp

Consider a symmetric matrix

and W, denote any bases of the null space of P and @,
respectively. With this notation, there exists a matrix &
of compatible dimension such that Z+P'5Q+Q"57P < 0
if and only if WizZWp < 0 and WZZW, < 0.

By partitioning X and X3 as

Xa=(gr b) o X =(F 7 (32)

where R, S, M, NeR™”". This lemma leads to the
following LMI based solvability conditions for the

sub-optimal H, synthesis problem [10].

Theorem 4.2

Consider a proper continuous-time plant G(s) of order
n and realization system equations (9) and let N and
Ny denote orthonormal bases of the null spaces of
(B, DY) and (C,, Dy) respectively. The sub-optimal
H,, problem of performance 7y is solvable if and only if

there exist two symmetric matrices R,Se R ™" satisfying
the following system of LMIs [10] ;

AR+ RAT RC] B,
(9| Tar om0 @
B D -7
- AS+TSAT SB, c; N o
21 B]S —71 Du 21 ¢ 0 (34)
(e 9| ms S o) (%Y
R
( RN (35)

Then, LMI of equation (30) is converted to the following
convex optimization problem.

J=Min Rx) < 7 (36)
subject to LMIs of (33), (34) and (35)

The computing solution (¥, R, §) is a convex
optimization problem and efficient algorithms are available
to solve this feasibility problem in LMI toolbox{19] of
MATLAB and SP code of the interior-point code. Any
feasible pair (R, S) determines a set of full-order 7

-suboptimal controllers as follows. First compute via SVD

two invertible matrices M,NeR ™ "such that

MNT=I-RS 37
The bounded real lemma matrix X is then uniquely
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determined by equation (32). Specially X is the unique

solution of linear equation as;

R 1 S
X =
a7 0)= (o w7 (38)
Once X is determined, an adequate full-order controller
is any solution &, of the controller LMI solved by the

LMI toolbox in MATLAB. It can be summarized that the
LMI-based H. synthesis is performed in two steps[10].

@ First solve a system of three LMIs where the
unknowns are two symmetric matrices R and S of
size equal to the plant order. These matrices determine
an adequate closed loop Lyapunov function.

@ Given 7, R, S and plant state space data, the controller
matrix is computed by solving the controller equations.

5. Main Design and Simulation Results
5.1 Main Design Results of H, PSS

An H, optimization result is summarized in Table 1
by the interior-point algorithm computation which is
available on LMI toolbox of MATLAB software
package[19]. The design and initial operating conditions
are summarized for a case study in Table 2 which
assumes that a nominal system operates at conditions of
Q.=0.3 pu,
p/=0.95 (lag) and infinite bus voltage

Singular values of the closed loop

active power P,=0.9 pu, reactive power

power factor
Eg=1.0 pu[14].
system with proposed H. PSS are plotted in Fig. 8,
which indicates that the maximum gain of design system
is less than ¥ value at the frequency region of
107ad/sec (1.67Hz) with the condition of bounded
uncertainty level and attenuation of the weighted filters.
Table 3 shows the main design result in the form of
state-space notation Ay, B, Ciand D, with an optimal
y value. It is compared with the result of standard two

Riccati equation method. We could get a smaller y value
which is more desirable for robustness requirements.

Table 1 Main Computation Results by LMI Optimization Method

Computation
Items Results
Optimal He, -Norm 12183 (28 Iteration)
Performance
Best Objective Value in 1218
Feasible solution :
Guaranteed Relative Accuracy 9.50e-003
. . . 2.449% of R =
Feasible Radius Saturation 1.00e+008

in
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Table 2 Plant Parameter Data and Initial Operating Condi-

tions [14]
System Parameters and System Matrix and
Initial Values Eigenvalues
Parameter Data (.U [-1?)(;90918180 0
wy=2xfy= 3771 H=3.82,
Kp=0.0026, Rey=0.05,| 4108 379700%40{)20820{)19638'
T'r=11.0sec R,=0.0037, 0 0 04505 0707 0257
X=1.15, X; =0.285, X,=1.68, [0 0 2257 10582 11764
X, =047, R,=0.014, o1 0; 000 O
X,=0.4448, X,=0.1248,{0 0 0 O; 000 0,
= 0.0064, 7,=0.95sec,| 90 0 01
K,=200, VMQ,=3.5, VMin=_3-5 [Om 0 0 0 0,
Initial P.U Values 0 0 0 0 2B’
Py=1.0,8,=80.5 ,P4=0.9,{ C =
Qo=03, p=0.95 (g), |19 910 0:00000
Exn=1.040" , Ty =4sec C =
Eg=1.026222.9° O 1 0 0 O
T =0.54sec K, =1.44778, 0 0 012 03 Q)
K,=1.31736, K;=0.45312, [(1)}'1():0 6 000 0
=1.223, Ks=—0.12, 090 0
K;=0.3 D =
@ State Variables [%l 1o o001
D={4T.(D, du(D, 250D, | =
HH=I (439;(":3(.)AE2((31 [Doug 16 0001
@ Control Variables : [0 0; 0 0]
w()=[ULD, AUk )]
® Exegous Inputs : A;
o= [ Wy Vor @ ] =-0.4379%8.3308],
=[(00 Ts 6] 0.6505+5.1596i,
-0.0907

Table 3 Design Results Comparison between Standard

Method and LMI Method

Standard Two Riccati
Item A LMI Method
Equation Method
Optimal 5.75 1.2188
7 min Value (No. of iteration : 12) (No. of iteration : 28 )
-2.2131+10.0710i, ~-4.0786113.6170j,
. -3.45251+9.66641 -1.59101+:9.42611
al g '
o -omr -0922
¥ -4.7937+4.6785i, -9.70051:5.74101,
-1.6310%+3.9760i, -1.0948 % 4.76561

Fig. 8 Plot of singular values of the closed loop including designed
PSS
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5.2 Simulation and Performance Evaluation

The simulation conditions with state variables, control
variables and control inputs are summarized in Table 1
PSS  design

Robustness performance against model uncertainties may

as per proposed He consideration.
be evaluated by the largest H, norm of the uncertainties
in order to guarantee the internal stability of closed
system as per equations (14) and (17). In this design, the
allowable bounded size of these wuncertainties around
frequence of wy=107ad/sec (1.67Hz) are computed and

evaluated as follows;

-~ Standard method : ”A”oo=ﬁ =0.174

- LMI method : ={.8211

=1
4l =7575

This means that the maximum Ho norm of allowable
uncertainties by standard and LMI methods are 0.174 and
0.8211, respectively. In addition, robustness performance
is evaluated by
assigning external disturbances to the nominal plant with
weighting filters. The worst case disturbance for
simulation signal is assumed to be that the strong
breaking torque ( T ) of equation (39) is suddenly

against the worst case disturbance

loaded to the swing equation in equation (2) [13];

2H d%

wo dP =Ty~ T,—Kpdw,— (39

The magnitude of breaking torque is usually dependent
on the location and type of event but the worst case
disturbance in this simulation case used is a bounded L,
signal of T5=10.5 p.u assuming 3-phase short circuit

accident[13].
signals are also used as two sensor noises which have

But, The zero mean and 2% covariance

high frequency characteristics. In the case of nominal
. Ky Fig. 9 and Fig.10 show
time responses of the deviation of rotating shaft angular

operating parameters K| ..
speed and deviation of power angle and in the case of
being changed operating parameters K, ...Kg around
20% from nominal values, Fig. 11 and Fig. 12 show those
respectively, where they are compared among LMI based
H,, PSS(®), standard H. PSS (®) and conventional
lead/lag PSS(®).

proposed Ho, PSS design can provide the best damping

From these simulation results, the

effect for a synchronous generator over a wide range of
operating conditions, and it provides guarantees to
minimize the low-frequency oscillation of a closed-loop
system and to maintain global system stability over the

predetermined uncertainties and disturbances.



Fig. 9 Time Response of Angular Speed Deviation with
Fixed Parameters (O LMl H, ® Standard H, @
lead/lag PSS)

Fig. 10 Time Response of Power Angle Deviation with Fixed
Parameters (® LMl H, ® Standard H., ®
leadflag PSS)

standard Hnf meihed

Fig. 11 Time Response of Angular Speed Deviation with

Changed Parameters (O LMl H, @ Standard
H, ® lead/lag PSS)

lead/lag filer method

Fig. 12 Time Response of Power Angle Deviation with
Changed Parameters (O LMl H, @ Standard H
® leadflag PSS)

LMl 2 M &g M8 Ho MOl AlAH MHAE oY 5E2|(PSS) 4
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6. Conclusion

The design method of the H,-based PSS using LMI
optimization technique has been designed to meet both
the stability margins and disturbance attenuation
requirements for robustness performance in terms of the
H, norm. The optimal H, norm (% values of LMI
method are compared with two Riccati solution methods
and it is found that the LMI method is less level, which
is more desirable for robust performance requirements.
The proposed PSS is demonstrated by the performance
comparison among standard H. optimization PSS and
conventional lead/lag PSS. Simulation results show that
the proposed H. PSS design can provide good damping
effect for a synchronous generator over a wide range of
He-based PSS design
approach is superior in terms of the readily achievable
closed-loop system performance under varying operating
conditions. Therefore, we can conclude that proposed LMI

operating conditions and the

based H., PSS provides the guarantees to minimize the
low-frequency oscillation and to maintain global system
stability over the
disturbances.

predetermined uncertainties and
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