• Title/Summary/Keyword: $Gd_2O_3$:Eu^{3+

Search Result 89, Processing Time 0.028 seconds

Preparation and Luminescence Properties of $Y_{2-x}Gd_xO_3:Eu$ Phosphors by Pechini Method (페치니법에 의한 $Y_{2-x}Gd_xO_3:Eu$ 형광체의 제조와 발광 특성)

  • Lee, Dong-Kyu;Lee, Jin-Hwa;Ahn, Byung-Chul;Jun, Sang-Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.207-214
    • /
    • 2006
  • $Y_{2-x}Gd_xO_3:Eu$, phosphors for plasma display panel(PDP), were prepared by Pechini method which use yttriun chloride, gadolinium chloride, and europium oxide as starting materials. This method is a different way to the synthesis of europium(Eu)-doped phosphors, and it consists of the formation of a polymeric resin obtained by polyesterification between metal chelate compounds and a polyfunctional alcohol. This needs lower temperature than solid-state synthetic method. The prepared $Y_{2-x}Gd_xO_3:Eu$ phosphor particles had spherical shape and coherence. The luminescence intensity of $Y_{2-x}Gd_xO_3:Eu$ phosphor particles increased according to the increase of gadolinium(Gd) content(to 0.8mol%), and $Y_{1.2}Gd_{0.8}O_3:Eu$ phosphors had the highest luminescence intensity under vacuum ultra violet(VUV) excitation. The optimum concentration of Eu in the phosphor and optimum calcination temperature was 3wt% and $1100^{\circ}C$. The prepared phosphors were consist of particle, and its size was between 100nm and 150nm. Among the different polyfunctional alcohols, diethylene glycol(DEG) improved the luminescence intensities of phosphors more than other additives. The Pechini method proved that it is demonstrated to be suitable for the synthesis of phosphors used in PDP.

Screening of Eu3+-and Tb3+-Activated Phosphors for PDP in the System of CaO-Gd2O3-Al2O3 (CaO-Gd2O3-Al2O3계에서의 PDP용 Eu3+와 Tb3+ 활성 형광체의 탐색)

  • Park, Sang-Mi;Kim, Chang-Hae;Park, Hui-Dong;Jang, Ho-Gyeom;Park, Jun-Taek
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.336-345
    • /
    • 2002
  • In this study, we have screened $Eu^{3+}$- and $Tb^{3+}$-activated candidate phosphors for PDP in the sys-tems of CaO-Gd$_2$O$_3$-Al$_2$O$_3$ by combinatorial chemistry and investigated the synthetic temperature, optimum com-position and luminescent properties about the candidate phosphors. To construct the emission intensity library by VUV PL, we have synthesized 210 different compositional samples using a polymerized-complex method. Good luminescent samples were identified by X-ray diffraction method. $Ca_$\alpha$$G$d_{0.95-$\alpha$-$\beta$}Al_$\beta$O_$\delta$$ : Eu(0.02< $\alpha$+$\beta$ <0.04) phos-phors screened as a red phosphor have good color purity than commercial phosphor. In the candidate phosphors of CaGdAl$_3O_7$ : Tb, Ca$Al_{12}O_{19}$ : Tb, Gd$_4$Al$_2O_9$ : Tb, and Gd$_3Al_5O_{12}$ : Tb CaGdAl$_3O_7$ : Tb, and Ca$Al_{12}O_{19}$ : Tb have shorter decay time than commercial phosphor.

Cation Substitution Induced Enhanced Photoluminescence Properties of Gd2(1-x-y)Y2xMo4O15:2yEu3+ Phosphors for Indoor Lighting

  • Du, Peng;Yu, Jae Su
    • Applied Science and Convergence Technology
    • /
    • v.27 no.3
    • /
    • pp.52-55
    • /
    • 2018
  • We reported a new method to enhance the photoluminescence (PL) properties of $Eu^{3+}$ ions doped $Gd_2Mo_4O_{15}$ phosphors via cation substitution. With the aid of conventional sol-gel method, a series of $Eu^{3+}$ ions doped $Gd_{2(1-x)}Y_{2x}Mo_4O_{15}$ phosphors were prepared. The prepared samples emitted red light when excited at 393 nm. Moreover, when part of the $Gd^{3+}$ ions was substituted by the $Y^{3+}$ ions, the PL emission intensity of the studied samples was enhanced and the optimal doping concentration for $Y^{3+}$ ions was 30 mol%. The calculated CIE coordinate (0.663,0.337) was situated in the red region. Furthermore, the thermal quenching behaviors of the synthesized $Eu^{3+}$ ions doped $Gd_{2(1-x)}Y_{2x}Mo_4O_{15}$ phosphors were studied. At last, we also packaged a red-emitting light-emitting diode device by integrating the obtained phosphors and a near-ultraviolet chip to verify the applications of the $Eu^{3+}$ ions doped $Gd_{2(1-x)}Y_{2x}Mo_4O_{15}$ phosphors for indoor lighting.

Optical characteristics of $Gd_2O_3$:Eu phosphor film for x-ray imaging detector (X선 영상 검출기 적용을 위한 $Gd_2O_3$:Eu 필름의 X선 발광 특성에 관한 연구)

  • Kim, So-Yeong;Kang, Sang-Sik;Cha, Byung-Youl;Son, Dae-Woong;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.344-344
    • /
    • 2007
  • 본 연구에서는 X선 영상 검출기로의 적용을 위하여 $Gd_2O_3$:Eu 형광체 필름을 제작하여 X선에 대한 발광 특성을 분석하였다. $Gd_2O_3$:Eu는 저온 액상법을 이용하여 분말 형태로 제조한 후 Particle-in-binder (PIB)으로 필름 형태로 제작한 후, 도핑된 Europium(Eu)의 농도와 소결 온도에 따른 X선에 대한 발광 특성을 분석하였다. Photolumimescence (PL) spectrum에서 611nm에서 가장 높은 발광 효율을 나타내었으며, 입자의 크기가 줄어듦에 따라 610nm에서 새로운 peak가 형성 되었다. 또한 Eu의 농도에 따라서 발광 강도의 차이가 관찰되었는데, 5wt%의 도핑 농도에서 가장 높은 발광 효율을 나타냈으며, 도핑 농도에 매우 의존적인 결과를 나타냈다. 소결 온도에 따른 발광 특성 분석에서, $500^{\circ}C$에서 소결하였을 때는 623nm에서 강한 peak를 나타내는 단사정계상의 발광 peak는 거의 관찰되지 않았으나 소결 온도가 $700^{\circ}C$$900^{\circ}C$에서는 peak가 확인되었다. 이를 통해 $Gd_2O_3$ 모체가 대부분 입방 대칭 구조를 가지는 $Gd_2O_3$:Eu가 합성되었음을 확인할 수 있었다. 또한 소결 온도에 따른 발광 강도를 분석한 결과 $900^{\circ}C$에서 소결하였을 때 가장 높은 발광 강도를 나타냈다. Luminescent decay time 측정 결과에서 도핑된 Eu의 농도가 커질수록 Luminescent decay time이 짧아짐을 확인할 수 있었다.

  • PDF

Aerosol Synthesis of Gd2O3:Eu/Bi Nanophosphor for Preparation of Photofunctional Pearl Pigment as Security Material

  • Jung, Kyeong Youl;Han, Jang Hoon;Kim, Dae Sung;Choi, Byung-Ki;Kang, Wkang-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.461-472
    • /
    • 2018
  • $Gd_2O_3:Eu/Bi$ nanoparticles were synthesized via spray pyrolysis and applied for the preparation of a luminescent pearl pigment as an anti-counterfeiting material. The luminescence properties were optimized by changing the $Eu^{3+}$ and $Bi^{3+}$ concentration. Ethylene glycol was used as an organic additive to prepare the $Gd_2O_3:Eu/Bi$ nanoparticles. The highest emission intensity was achieved when the total dopant content was 10.0 at.% and the mole fraction of Bi was 0.1. The concentration quenching was mainly due to dipole-dipole interactions between the same activators, and the critical distances were 9.0 and $19.6{\AA}$ for $Eu^{3+}$ and $Bi^{3+}$, respectively. The prepared $Gd_2O_3:Eu/Bi$ powder exhibited an average size of approximately 82.5 nm and a narrow size distribution. Finally, the $Gd_2O_3:Eu/Bi$ nanophosphor coated on the surface of the pearl pigment was confirmed to have good red emission under irradiation from a portable ultraviolet light-emitting diode lamp (365 nm).

Luminescence Properties of Red Phosphor Gd2-x-yLixEuyO3 (적색 형광체 Gd2-x-yLixEuyO3의 발광 특성)

  • 조신호;변송호;김동국;박중철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.258-263
    • /
    • 2002
  • We present a new toed phosphor, $Gd_{2-x-y}Li_xEu_yO_3$ with superior luminescent Properties compared to the commercially available red phosphor $Y_2O_3:Eu^{3+}$. The phosphor, with a diameter of about $2\mu\textrm{m}$, consists of the psedospherical particles in a regular array. The photoluminescence measurements as a function of the laser power and the Eu mole fraction were performed at zoom temperature The luminescence intensity linearly increases as both the laser power and the Eu mole fraction Increase. As for the dependence on cathodoluminescence, the incorporation of Eu and Li ions into $Gd_2O_3$ lattice brings about an increase in luminescent efficiency. The highest emission intensity for the phosphor occurs at the applied voltage of 500 V, its value is larger than that of $Y_2O_3:Eu^{3+}$ powder by 70%.

The particle properties and luminescence properties of Gd2O3:Eu using solution-combustion with various Eu content were analysis (X선 검출기를 위해 특수용매 액상법으로 합성한 Gd2O3:Eu의 Europium(Eu) 함량에 따른 입자특성과 발광특성의 분석)

  • Kim, Sung-Hyun;Kim, Young-Bin;Jung, Suk-Hee;Kim, Min-Woo;Oh, Kyung-Min;Park, Ji-Gun
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 2008
  • In this study, the particle properties and luminescence properties of Gd2O3 nano powder with various Eu content were studied. Gd2O3:Eu nano powder was fabricated using special solvent which mixed the alcohol and the distilled water at specific ratio. This solvent by the solution method showed short fabrication time because solution time of Gd and Eu was reduced. From this experiment with Gd2O3:Eu, the particle properties og nano powder phosphor way analysed using SEM (scanning electron microscope) and EDX(Energy Dispersive X-ray). Also the luminescence properties of nano powder was measured using PL(Photoluminescence) and CL (CathodeLuminescence). The size of powder was 30nm~40nm. The magnitude of powder showed the best peak at 620nm. Among 1,3,5wt% of Eu content, the more Eu content was added in powder, the more photons wre generated. Also it shows luminescence efficiency was improved adding 5% of Eu content.

  • PDF

Nano-sized Gd2O3:Eu Phosphor Prepared by Spray Pyrolysis (분무열분해 공정에 의해 합성되어진 나노 크기 Gd2O3:Eu형광체)

  • Kim, Eun-Joung;Kang, Yun-Chan;Park, Hee-Dong;Ryu, Seung-Kon
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.771-775
    • /
    • 2002
  • $Gd_2$$O_3$:Eu phosphor particles with nano-sized and non-aggregation characteristics were prepared by spray pyrolysis using the spray solution containing polymeric precursor and $Li_2$$CO_3$ flux material. Nano-sized $Gd_2$$O_3$:Eu phosphor particles had higher brightness than the commercial $Y_2$$O_3$:Eu phosphor particles. The $Gd_2$$O_3$:Eu phosphor particles had nano-size and non-aggregation characteristics after heat-treatment at $1000^{\circ}C$ when the addition amount of $Li_2$$CO_3$ flux was 1 wt.% and 3 wt.%. The mean size of particles were 200 nm and 400 nm when the amount of flux was 1 wt.% and 3 wt.%, respectively. The prepared phosphor particles had higher photoluminescence intensity than that of the commercial product regardless of the content of$ Li_2$$CO_3$ flux and had the maximum brightness when the content of flux was 5 wt %. The photoluminescence intensity of the nano-sized $Gd_2$$O_3$:Eu phosphor particles containing 3 wt.% $Li_2$$CO_3$ flux was 125% in comparison with that of the micron-sized $Y_2$$O_3$:Eu commercial product.

Gd$_2O_3$:Eu phosphor particles with spherical and filled morphology

  • Roh, Hyun-Sook;Kang, Yun-Chan;Park, Hee-Dong;Park, Seung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.253-256
    • /
    • 2002
  • $Gd_2O_3$:Eu phosphor particles were prepared by largescale ultrasonic spray pyrolysis process. The morphological control of $Gd_2O_3$:Eu particles in spray pyrolysis was performed by adding polymeric precursors into spray solution containing nitrate salts. The effect of composition and amount of polymeric precursors on the morphology, crystallinity, and photoluminescence characteristics of $Gd_2O_3$:Eu particles was investigated. The influence of chain length of PEG on the morphology and photoluminescence intensity was investigated. $Gd_2O_3$:Eu particles prepared from aqueous solution containing no polymeric precursors had a hollow structure and rough surfaces after annealing process. The phosphor particles prepared from solution containing 0.1M CA and 0.lM PEG with high molecular weight as 1,500 had a spherical and filled morphology and the highest photoluminescence intensity, which was 48% higher than that of the $Y_2O_3$:Eu commercial product.

  • PDF

Fabrication of $Gd_2O_3:Eu^{3+}$ Nano Phosphor and Optical Characteristics for High Resolution Radiation Imaging (고해상도 방사선 영상을 위한 $Gd_2O_3:Eu^{3+}$ 나노 형광체 제조 및 광학적 특성)

  • Kim, So-Yeong;Kang, Sang-Sik;Park, Ji-Koon;Cha, Byung-Youl;Choe, Chi-Won;Lee, Hyung-Won;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.148-152
    • /
    • 2007
  • In this paper, we have synthesized $Gd_2O_3:Eu^{3+}$ nano phosphor particle using a low temperature solution-combustion method. We have investigated the structure and the luminescent characteristic as the sintering temperature and europium concentration. From XRD(X-ray diffraction) and SEM(scanning electron microscope) results, we have verified that the phosphor particle was fabricated a spherical shape with $30{\sim}40nm$ particle size. From the photoluminescence results, the strong peak exhibits at 611 um and the luminescent intensity depends on europium concentration. $Gd_2O_3:Eu$ fine phosphor particle has shown excellent luminescent efficiency at 5 wt% of europium concentration. The phosphors calcinated at $500^{\circ}C$ have possessed the x-ray peaks corresponding to the cubic phase of $Gd_2O_3$. As calcinations temperature increased to $700^{\circ}C$, the new monoclinic phase has identified except cubic patterns. From the luminescent decay time measurements, mean lifetimes were $2.3{\sim}2.6ms$ relatively higher than conventional bulk phosphors. These results indicate that $Gd_2O_3:Eu$ nano phosphor is possible for the operation at the low x-ray dose, therefore, the application as medical imaging detector.