• Title/Summary/Keyword: $Ga_2O_3$ Substrate

Search Result 160, Processing Time 0.024 seconds

Characteristics of Al/$BaTa_2O_6$/GaN MIS structure (Al/$BaTa_2O_6$/GaN MIS 구조의 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.7-10
    • /
    • 2006
  • A GaN-based metal-insulator-semiconductor (MIS) structure has been fabricated by using $BaTa_2O_6$ instead of conventional oxide as insulator gate. The leakage current o) films are in order of $10^{-12}-10^{-13}A/cm^2$ for GaN on $Al_2O_3$(0001) substrate and in order of $10^{-6}-10^{-7}A/cm^2$ for GaN on GaAs(001) substrate. The leakage current of thses films is governed by space-charge-limited current over 45 MV/cm in case of GaN on $Al_2O_3$(0001) substrate and by Poole-Frenkel emission in case of GaN on GaAs(001).

Characterization of alpha-Ga2O3 epilayers grown on cone-shape patterned sapphire substrate by halide vapor phase epitaxy (원뿔 형태의 patterned sapphire substrate 위에 성장한 α-Ga2O3의 특성분석)

  • Son, Hoki;Choi, Ye-Ji;Lee, Young-Jin;Kim, Jin-Ho;Kim, Sun Woog;Ra, Yong-Ho;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.173-178
    • /
    • 2019
  • In this study, we demonstrated a characterization of ${\alpha}-Ga_2O_3$ grown on a cone-shape patterned sapphire substrate by using the halide vapor phase epitaxy. An ${\alpha}-Ga_2O_3$ was grown on different size of PSS and c-plane sapphire substrate for comparison to confirm the effect of PSS. In addition, growth time of ${\alpha}-Ga_2O_3$ was gradually increased to confirm growth mechanism of ${\alpha}-Ga_2O_3$ grown on the PSS. A growth temperature was changed to $470-550^{\circ}C$. It can be analyzed growth conditions and mechanisms on the cone-shape PSS, resulting in a significant decrease in the FWHM value of an asymmetric plane (10-14) of ${\alpha}-Ga_2O_3$, due to lateral growth that occurs during the growth process.

Microstructural analysis and characterization of 1-D ZnO nanorods grown on various substrates (다양한 기판위에 성장한 1차원 ZnO 나노막대의 특성평가 및 미세구조 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.116-117
    • /
    • 2006
  • I-D ZnO nanostructures were fabricated by thermal evaporation method on Si(100), GaN and $Al_2O_3$ substrates without a catalyst at the reaction temperature of $700^{\circ}C$. Only pure Zn powder was used as a source material and Ar was used as a carrier gas. The shape and growth direction of synthesized ZnO nanostructures is determined by the crystal structure and the lattice mismatch between ZnO and substrates. The ZnO nanostructure on Si substrate were inclined regardless of their substrate orientation. The origin of ZnO/Si interface is highly lattice-mismatched and the surface of the Si substrate inevitably has the $SiO_2$ layer. The ZnO nanostructure on the $Al_2O_3$ substrate was synthesized into the rod shape and grown into particular direction. For the GaN substrate, however, ZnO nanostructure with the honeycomb-like shape was vertically grown, owing to the similar lattice parameter with GaN substrate.

  • PDF

Optical Properties of HVPE Grown Thick-film GaN on $MgAl_2O_4$ Substrate ($MgAl_2O_4$ 기판위에 HVPE법으로 성장된 후막 GaN의 광학적 특성)

  • Lee, Yeong-Ju;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.526-531
    • /
    • 1998
  • A hydride vapor phase epitaxy (HVPE) method was performed to grow the $10~240\mu{m}$ thick GaN films on (111) spinel $MgAl_2O_4$ substrate. The GaN films on $MgAl_2O_4$ substrate revealed a photoluminescence (PL) characteristics of the impurity doped GaN by the out-diffusion and auto-doping of Mg from $MgAl_2O_4$ substrate during GaN growth. The PL spectrum measured at 10K consists of free and bound excitons related recombination transitions and impurity-related donor-acceptor pair recombination and its phonon replicas. However, the deep-level related yellow band emission was not observed. The peak energy of neutral donor bound excitonic emission and the frequency of Raman $E_2$ mode were exponentially decreased with increasing the GaN thicknesses. and the frequency of E, Raman mode was shifted with the relation of $\Delta$$\omega$=3.93$\sigma$($cm^{-1}$/GPa), where l1 (GPa) is the residual strain in the GaN epilayers.

  • PDF

Study on the Properties of ZnO:Ga Thin Films with Substrate Temperatures (기판 온도에 따른 ZnO:Ga 박막의 특성)

  • Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.794-799
    • /
    • 2017
  • Ga-doped ZnO (GZO) films were deposited by an RF magnetron sputtering method on glass substrates using ZnO as a target containing 5 wt% $Ga_2O_3$ powder (for Ga doping). The structural, electrical, and optical properties of the GZO thin films were investigated as a function of the substrate temperatures. The deposition rate decreased with increasing substrate temperatures from room temperature to $350^{\circ}C$. The films showed typical orientation with the c-axis vertical to the glass substrates and the grain size increased up to a substrate temperature of $300^{\circ}C$ but decreased beyond $350^{\circ}C$. The resistivity of GZO thin films deposited at the substrate temperature of $300^{\circ}C$ was $7{\times}10^{-4}{\Omega}cm$, and it showed a dependence on the carrier concentration and mobility. The optical transmittances of the films with thickness of $3,000{\AA}$ were above 80% in the visible region, regardless of the substrate temperatures.

Characterization of Ga, Al or In Doped ZnO Films Deposited by DC Magnetron Sputtering (DC 마그네트론 스터링법을 이용하여 증착한 Ga, Al, In 첨가 ZnO 박막의 특성)

  • Park, Sang-Eun;Park, Se-Hun;Jie, Lue;Song, Pung-Keun
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.4
    • /
    • pp.142-146
    • /
    • 2008
  • Trivalent ions(Ga, Al, In) doped ZnO films were deposited by DC magnetron sputtering on non-alkali glass substrate at substrate temperature of $300^{\circ}C$. We used the different three types of high density($95%{\sim}$) ceramic sintered disks(doped with $Ga_2O_3$; 6.65 wt%, $Al_2O_3$; 3.0 wt%, $In_2O_3$; 9.54 wt%). This study examined the effect of different dopants(Ga, Al, In) on the electrical, structural, and optical properties of the films. The lowest resistivity of $5.14{\times}10^{-4}{\Omega}cm$ and the highest optical band gap of 3.74 eV were obtained by Ga doped ZnO(GZO) film. All the films had a preferred orientation along the(002) direction, indicating that the growth orientation has a c-axis perpendicular to the substrate surface. The average transmittance of the films was more than 85% in the visible range.

Ga2O3 Epi Growth by HVPE for Application of Power Semiconductors (전력 반도체 응용을 위한 HVPE법에 의한 Ga2O3 에피성장에 관한 연구)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.427-431
    • /
    • 2018
  • This research was worked about $Ga_2O_3$ Epi wafer that was one of the mose wide band gap semiconductors to be used power semiconductor industry. This wafer was grown $5.3{\mu}m$ thickness on Sn doped $Ga_2O_3$ Substrate by HVPE(Hydride Vapor Phase Epitaxy). Generally, we can fabricate 600V class power semiconductor devices when the thickness of compoound power semiconductor is $5{\mu}m$. but in case of $Ga_2O_3$ Epi wafer, we can obtain over 1000V class. As a result of J-V measurment of the grown $Ga_2O_3$ Epi wafer, we obtain $2.9-7.7m{\Omega}{\cdot}cm^2$ on resistance. Specially, in case of reverse, we comfirmed a little leakage current when the reverse voltage is over 200V.

Electrical and Structural Properties of GAZO Films Deposited by DC Magnetron Co-sputtering System with Two Cathodes (DC 마그네트론 Co-sputtering 시스템을 이용하여 증착한 GAZO 박막의 전기적 및 구조적 특성)

  • Jie, Luo;Park, Se-Hun;Song, Pung-Keun
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.3
    • /
    • pp.122-127
    • /
    • 2009
  • Ga/Al doped ZnO (GAZO) thin films were prepared on non-alkali glass substrate by co-sputtering system using two DC cathodes equipped with AZO ($Al_2O_3$:2.0 wt%) target and GZO ($Ga_2O_3$:6.65 wt%) target. This study examined the influence of Al/Ga concentration and substrate temperature on the electrical, structural and optical properties of GAZO films. The lowest resistivity $1.95{\times}10^{-3}{\Omega}cm$ was obtained at room temperature. With increasing substrate temperature, resistivity of GAZO film decreased to a minimum value of $7.47{\times}10^{-4}{\Omega}cm$ at below $300^{\circ}C$. Furthermore, when 0.05% $H_2$ gas was introduced, resistivity of GAZO film decreased to $6.69{\times}10^{-4}{\Omega}cm$. All the films had a preferred orientation along the (002) direction, indicating that the deposited films have hexagonal wurtzite structure formed by the textured growth along the c-axis. The average transmittance of the films was more than 85% in the visible light range.

The Electrical and Optical Properties of Ga-doped ZnO Films Prepared by Using Facing Target Sputtering System (대향 타겟식 스퍼터링 방법에 의해 성막된 Ga-doped ZnO 박막의 전기 광학적 성질)

  • Choi, Myung Gyu;Bae, Kang;Seo, Sung-Bo;Kim, Dong-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.385-390
    • /
    • 2013
  • $(Ga_2O_3)_x(ZnO)_{100-x}$ (GZO) films were prepared at room temperature by using a facing target sputtering (FTS) system and their electrical resistivites was investigated as a function of the $Ga_2O_3$ content. The GZO film with an atomic ratio of $Ga_2O_3$ of x= 7 wt.%, shows the lowest resistivity of $7.5{\times}10^{-4}{\Omega}{\cdot}cm$. The GZO films were also prepared at various substrate temperatures from room temperature to $300^{\circ}C$, and their electrical resistivity was found to be improved as the substrate temperature was increased, A very low resistivity of $2.8{\times}10^{-4}{\Omega}{\cdot}cm$ that is almost comparable with that of ITO film was obtained in the GZO films prepared at the substrate temperature of $300^{\circ}C$ by using the FTS.

Fabrication of a depletion mode p-channel GaAs MOSFET using $Al_2O_3$ gate insulator ($Al_2O_3$ 게이트 절연막을 이용한 공핍형 p-채널 GaAs MOSFET의 제조)

  • Jun, Bon-Keun;Lee, Tae-Hyun;Lee, Jung-Hee;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.421-426
    • /
    • 1999
  • In this paper, we present p-channel GaAs MOSFET having $Al_2O_3$ as gate insulator fabricated on a semi-insulating GaAs substrate, which can be operated in the depletion mode. $1\;{\mu}m$ thick undoped GaAs buffer layer, $4000\;{\AA}$ thick p-type GaAs epi-layer, undoped $500{\AA}$ thick AlAs layer, and $50\;{\AA}$ thick GaAs cap layer were subsequently grown by molecular beam epitaxy(MBE) on (100) oriented semi-insulating GaAs substrate and this wafer was oxidized. AlAs layer was fully oxidized as a $Al_2O_3$ thin film. The I-V, $g_m$, breakdown charateristics of the fabricated GaAs MOSFET showed that wet thermal oxidation of AlAs/GaAs epilayer/S I GaAs was successful in realizing depletion mode p-channel GaAs MOSFET.

  • PDF