• Title/Summary/Keyword: $Ga_{2}O_{3}$

Search Result 929, Processing Time 0.023 seconds

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

Bandgap Control of (AlxGa1-x)2O3 Epilayers by Controlling Aqueous Precursor Mixing Ratio in Mist Chemical Vapor Deposition System (미스트화학기상증착시스템의 전구체 수용액 혼합비 조절을 통한 (AlxGa1-x)2O3 에피박막의 밴드갭 특성 제어 연구)

  • Kim, Kyoung-Ho;Shin, Yun-Ji;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.528-533
    • /
    • 2019
  • We investigated the growth of $(Al_xGa_{1-x})_2O_3$ thin films on c-plane sapphire substrates that were grown by mist chemical vapor deposition (mist CVD). The precursor solution was prepared by mixing and dissolving source materials such as gallium acetylacetonate and aluminum acetylacetonate in deionized water. The [Al]/[Ga] mixing ratio (MR) of the precursor solution was adjusted in the range of 0~4.0. The Al contents of $(Al_xGa_{1-x})_2O_3$ thin films were increased from 8 to 13% with the increase of the MR of Al. As a result, the optical bandgap of the grown thin films changed from 5.18 to 5.38 eV. Therefore, it was determined that the optical bandgap of grown $(Al_xGa_{1-x})_2O_3$ thin films could be effectively engineered by controlling Al content.

The optical and thermal properties of Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 mid-infrared transmission glass (Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 계 중적외선 투과 유리의 조성에 따른 광학적, 열적 특성)

  • Minsung Hwang;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.250-254
    • /
    • 2023
  • In this study, Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 glasses with high transmittance in mid-infrared region and high refractive indices were successfully synthesized. The relationship between glass properties and glass composition was analyzed. In Li2O-BaO-Ga2O3-TeO2-TiO2-GeO2 glass system, as increasing TeO2 concentration, the refractive index increases and the glass transition temperature decreases. In addition, as increasing BaO concentration, the refractive index increases without decrease of Abbe number. The IR-cut off wavelength shifted to the longer wavelength with increasing TeO2 and BaO contents due to their large molecular weight. The glass transition temperature significantly decreases when BaO was replaced with Li2O.

1.5 kV GaN Schottky Barrier Diode for Next-Generation Power Switches (차세대 전력 스위치용 1.5 kV급 GaN 쇼트키 장벽 다이오드)

  • Ha, Min-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1646-1649
    • /
    • 2012
  • The $O_2$ annealing technique has considerably suppressed the leakage current of GaN power devices, but this forms NiO at Ni-based Schottky contact with increasing on-resistance. The purpose of the present study was to fabricate 1.5 kV GaN Schottky barrier diodes by improving $O_2$-annealing process and GaN buffer. The proposed $O_2$ annealing performed after alloying ohmic contacts in order to avoid NiO construction. The ohmic contact resistance ($R_C$) was degraded from 0.43 to $3.42{\Omega}-mm$ after $O_2$ annealing at $800^{\circ}C$. We can decrease RC by lowering temperature of $O_2$ annealing. The isolation resistance of test structure which indicated the surface and buffer leakage current was significantly increased from $2.43{\times}10^7$ to $1.32{\times}10^{13}{\Omega}$ due to $O_2$ annealing. The improvement of isolation resistance can be caused by formation of group-III oxides on the surface. The leakage current of GaN Schottky barrier diode was also suppressed from $2.38{\times}10^{-5}$ to $1.68{\times}10^{-7}$ A/mm at -100 V by $O_2$ annealing. The GaN Schottky barrier diodes achieved the high breakdown voltage of 700, 1400, and 1530 V at the anode-cathode distance of 5, 10, and $20{\mu}m$, respectively. The optimized $O_2$ annealing and $4{\mu}m$-thick C-doped GaN buffer obtained the high breakdown voltage at short drift length. The proposed $O_2$ annealing is suitable for next-generation GaN power switches due to the simple process and the low the leakage current.

Mössbauer Study of Tb2Bi1GaxFe5-xO12(x=0, 1) (Tb2Bi1GaxFe5-xO12(x=0, 1)의 뫼스바우어 분광연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.67-70
    • /
    • 2008
  • $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) fabricated by sol-gel and vacuum sealed annealing process. $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) have been studied by x-ray diffraction(XRD), vibrating sample magnetometer, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The determined lattice constants $a_0$ of x = 0, and 1 are $12.497\AA$, and $12.465\AA$, respectively. The distribution of gallium and iron in $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$ is studied by Rietveld refinement. Based on Rietveld refinement results, the terbium and bismuth ions occupy the 24c site, iron ions occupy the 24d, l6a site, and nonmagmetic gallium ions occupy the 16a site. In order to verify the magnetic site occupancy of iron and gallium, we have taken $M\ddot{o}ssbauer$ spectra for $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) at room temperature. From the results of $M\ddot{o}ssbauer$ spectra analysis, the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 60.8 % and 39.2 %, respectively, and the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 74.7 % and 25.3 %, respectively. It is noticeable that all of the nonmagnetic Ga atoms occupy the 16a site by vacuum annealing process.

Structure and optical properties of vapor grown In2O3: Ga nano-/microcrystals

  • Sanchez, Diego Leon;Ramon, Jesus Alberto Ramos;Zaldivar, Manuel Herrera;Pal, Umapada;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.81-96
    • /
    • 2015
  • Octahedral shaped single crystalline undoped and Ga-doped indium oxide nano-and microcrystals were fabricated using vapor-solid growth process. Effects of Ga doping on the crystallinity, defect structure, and optical properties of the nano-/microstructures have been studied using scanning electron microscopy, microRaman spectroscopy, transmission electron microscopy and cathodoluminescence spectroscopy. It has been observed that incorporation of Ga does not affect the morphology of $In_2O_3$ structures due to its smaller ionic radius, and similar oxidation state as that of In. However, incorporation of Ga in high concentration (~3.31 atom %) causes lattice compression, reduces optical band gap and defect induced CL emissions of $In_2O_3$ nano-/microcrystals. The single crystalline Ga-doped, $In_2O_3$ nano-/microcrystals with low defect contents are promising for optoelectronic applications.

Alumina masking for deep trench of InGaN/GaN blue LED in ICP dry etching process

  • 백하봉;권용희;이인구;이은철;김근주
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.59-62
    • /
    • 2005
  • 백색 LED 램프를 제조하는 공정에서 램프간의 전기적 개방상태의 절연상태를 유지하기 위해 사파이어 기판 위에 성장된 GaN 계 반도체 에피박막층을 제거하기 위해 유도 결합형 플라즈마 식각 공정을 이용하였다. 4 미크론의 두께를 갖는 GaN 층을 식각하는데 있어 식각 방지 마스킹 물질로 포토레지스트, $SiO_2,\;Si_{3}N_4$$Al_{2}O_3$를 시험하였다. 동일한 전력 및 가스유량상태에서 $Al_{2}O_3$만 에피층을 보호할 수 있음을 확인하였다.

  • PDF

Reduction of gate leakage current for AlGaN/GaN HEMT by ${N_2}O$ plasma (${N_2}O$ 플라즈마에 의한 AlGaN/GaN HEMT의 누설전류 감소)

  • Yang, Jeon-Wook
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.152-157
    • /
    • 2007
  • AlGaN/GaN high electron mobility transistors (HEMTs) were fabricated and the effect of ${N_2}O$ plasma on the electrical characteristics of the devices was investigated. The HEMT exposed to ${N_2}O$ plasma formed by 40 W of RF power in a chamber with pressure of 20 mTorr at a temperature of $200^{\circ}C$, exhibited a reduction of gate leakage current from 246 nA to 1.2 pA by 10 seconds treatment. The current between the two isolated active regions reduced from 3 uA to 7 nA and the sheet resistance of the active layer was lowered also. The variations of electrical characteristics for HEMT were occurred within a short time expose of 10 seconds and the successive expose did not influence on the improvements of gate leakage characteristics and conductivity of the active region. The reduced leakage current level was not varied by successive $SiO_2$ deposition and its removal. The transconductnace and drain current of AlGaN/GaN HEMTs were increased also by the expose to the ${N_2}O$ plasma.

  • PDF