• Title/Summary/Keyword: $G\ddot{o}del's$ incompleteness theorems

Search Result 4, Processing Time 0.018 seconds

On G$\ddot{o}$del′s Program from Incompleteness to Speed-up

  • 현우식
    • Journal for History of Mathematics
    • /
    • v.15 no.3
    • /
    • pp.75-82
    • /
    • 2002
  • G$\ddot{o}$del's metamathematical program from Incompleteness to Speed-up theorems shows the necessity of ever higher systems beyond the fixed formal system and devises the relative consistency.

  • PDF

Equivalence of Mind and Information Processing Formal System: $G{\ddot{o}}del's$ Disjunctive Conclusion and Incompleteness Theorems (마음과 정보처리형식체계의 논리적 동치성: 괴델의 선언결론과 불완전성 정리를 중심으로)

  • Hyun, Woo-Sik
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.258-263
    • /
    • 1995
  • 마음과 기계의 관계에 대한 $G{\ddot{o}}del's$의 선언결론(disjunctive conclusion)은 마음과 정보처리형식체계의 논리적 동치성을 함의하고 있다. 그리고 $G{\ddot{o}}del's$의 불완전성 정리(Incompleteness Theorems)에 따르면 마음과 정보처리형식체계의 논리적 동치성은 무모순이며, 동치성 반증의 이론은 그 모델을 가질 수 없다.

  • PDF

Mathematics as Syntax: Gödel's Critique and Carnap's Scientific Philosophy (구문론으로서의 수학: 괴델의 비판과 카르납의 과학적 철학)

  • Lee, Jeongmin
    • Korean Journal of Logic
    • /
    • v.21 no.1
    • /
    • pp.97-133
    • /
    • 2018
  • In his unpublished article, "Is Mathematics Syntax of Language?," $G{\ddot{o}}del$ criticizes what he calls the 'syntactical interpretation' of mathematics by Carnap. Park, Chun, Awodey and Carus, Ricketts, and Tennant have all reconstructed $G{\ddot{o}}del^{\prime}s$ arguments in various ways and explored Carnap's possible responses. This paper first recreates $G{\ddot{o}}del$ and Carnap's debate about the nature of mathematics. After criticizing most existing reconstructions, I claim to make the following contributions. First, the 'language relativity' several scholars have attributed to Carnap is exaggerated. Rather, the essence of $G{\ddot{o}}del^{\prime}s$ critique is the applicability of mathematics and the argument based on 'expectability'. Thus, Carnap's response to $G{\ddot{o}}del$ must be found in how he saw the application of mathematics, especially its application to science. I argue that the 'correspondence principle' of Carnap, which has been overlooked in the existing discussions, plays a key role in the application of mathematics. Finally, the real implications of $G{\ddot{o}}del^{\prime}s$ incompleteness theorems - the inexhaustibility of mathematics - turn out to be what both $G{\ddot{o}}del$ and Carnap agree about.

The Mathematical Foundations of Cognitive Science (인지과학의 수학적 기틀)

  • Hyun, Woo-Sik
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.31-44
    • /
    • 2009
  • Anyone wishing to understand cognitive science, a converging science, need to become familiar with three major mathematical landmarks: Turing machines, Neural networks, and $G\ddot{o}del's$ incompleteness theorems. The present paper aims to explore the mathematical foundations of cognitive science, focusing especially on these historical landmarks. We begin by considering cognitive science as a metamathematics. The following parts addresses two mathematical models for cognitive systems; Turing machines as the computer system and Neural networks as the brain system. The last part investigates $G\ddot{o}del's$ achievements in cognitive science and its implications for the future of cognitive science.

  • PDF