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On Godel’s Program

from Incompleteness to Speed—up
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Abstract

Godel's metamathematical program from Incompleteness to Speed-up theorems shows
the necessity of ever higher systems beyond the fixed formal system and devises the

relative consistency.

0. Formal Mathematical Systems

According to Godell8], a formal mathematical system is a system of symbols with

rules for using them. This system basically consists of two parts: Language part and
Transformation rule part.

Fomal Language: The individual symbols are called undefined terms. Formulas are

finite sequences of the undefined terms.

Transformation Rule: There is a class of formulas called meaningful formulas, and a

class of meaningful formulas called axioms. Rule of inference is a specified list of
rules.

If such a rule be called R, it defines the relation of immediate consequence by R
between a set of meaningful formulas My, -, M called the premises and a meaningful
formula N, called the conclusion.

For each rule of inference there is a finite procedure for determining whether a given
formula B is an immediate consequence by that rule of given formulas Ai, -+, A, and

there is a finite procedure for determining whether a given formula A is a meaningful
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formula or an axiom. Therefore, rule of inference must be effective.

A formula N is called an immediate consequence of M, ---, M, if N is an immediate
onsequence of M), -, M, by any one of the rules of inference. A finite sequence of
formulas is a proof, ie., the last formula of the sequence, if each formula of the
sequence 1s either an axiom or an immediate consequence of one or more of the

preceding formulas. A formula is provable if a proof of it exists.

Let the symbol A be one of the undefined terms and express negation. Then the
f[ormal system is said to be complete if for every meaningful formula A either A or ™
A is provable. A formal system is said to be consistent if and only if there is no
formula A such that both A and A are provable. A formal system is said to be
decidable if and only if there exists a mechanical procedure for determining whether

any given formula is provable.

1. Godel’s First Incompleteness Theorem

E. Post[13] viewed the Gédel’s incompleteness theorem as a fundamental discovery in
the limitations of the mathematicizing powers of Homo Sapiens. According to Post,
(+6del’s theorem concerning the incompleteness of first order logic can be transformed
into conclusions concerning all formal logics and all methods of solvability.

In 1931, Gédel proved that a system, in which all propositions of arithmetic can be
cxpressed as meaningful formulas, is not complete. This means that he established the
incompleteness of a sufficiently strong axiomatic formal system. By introducing Godel
numbering of formal expressions, he arithmetized the syntax of primitive recursive
extension of the system P from Principia Mathematica by B. Russell and A. N.
Whitehead. Godel then employed a diagonal argument and constructed a Godel sentence

(r that 1s not provable in P.
We say that a formal system S is sound for a formula [7 (1) in S whenever IT (1) 1s
true in the system of natural numbers if S proves I7 (1) If follows that a formal system

S is consistent if and only if S is sound for I7 (1) Here, we may consider 17 (1) formulas
as VyP(x,v) with one free variable x and a decidable predicate P Let Pf(x,y) be

a decidable binary predicate expressing that y is a proof of the formula x in S.2) Then

1. The class of 7l formulas are one of the form VP(x) representing for all variables x the
predicate P holds, where the predicate P has a decidable property of natural numbers.
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Vy T Pf(x,y) is in the class of IT} formulas. Godel constructed a JTY sentence such
as

G(S) = Vy™PAy,y)
where 7 is the Godel number of G(S).

Godel’'s First Incompleteness Theorem(1931) says that if a formal system S is
consistent then neither G(S) nor T'G(S) is provable in S. Here, let M be a mathematical
system that makes only true statements. Suppose that we obtain a Godel sentence such
that

M & "M never proves G is true.

(1) If G is provable in M, then "M never proves G is true, is true. Hence, M never
proves G. (2) If G is not provable in M, then "M never proves G is true; is false.
Hence, M proves G. Both contradicts the consistency of M.3

2. Godel’s Second Incompleteness Theorem

By formalizing the proof of the first incompleteness theorem, Goédel stated the second
incompleteness theorem in his same work[6]. Godel's Second Incompleteness Theorem
says that if a formal system S is consistent then its own consistency, denoted by
Con(S), is not provable in S. The second incompleteness theorem may be restated from

various perspectives. Versions of other scholars are as follows:

1. S. Kleene [12] If the number-theoretic formal system is consistent, then not prove
Con, Le., if the system is consistent, then there is no consistency proof for it by
methods formalizable in the system.

2. P. Cohen [2] Con(Z1) cannot be proved in Zi (where Zi is the formal system for

2. Pf{x,y) is a decidable relation between two natural numbers x and y, that is, an algorithm
exists to decide, for each choice of value x and y, whether or not Pf(x,y) holds.

Godel’s first incompleteness theorem differs from Liar's Paradox in that the theorem employs
metamathematical method. Let @ be the class of formulas that are not expressed in a system
S, and A be the class of formulas that are expressed in S. Suppose that fSa, where B

represents the class of formulas provable in S. Then Godel proved that ACa. By the
soundness theorem, there exists a true sentence but not provable. Hence, Godel's incompleteness
theorem is not a paradox. For more on this issue, see [8].
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elementary arithmetic).

3. T. Jech [11] It is unprovable in set theory, (unless it is inconsistent) that there
exists a model of set theory.

4. H. DeLong [3] No consistent human computer can prove his own consistenty.

It is said that Godel’s incompleteness theorem was a fatal blow to the Hilbert's
formalist program for the foundations of mathematics. However, this is not an trivially
supported statement. For Godel himself did not deny the possibility of a finitist proof of
the consistency of mathematics. As Godel concluded,

The entire proof of Theorem XI (ie, the Second Incompleteness Theorem)
carries over word for word to the axiom system of set theory, M, and to
that of classical mathematics, A, and here, too, it yields the result: There is
no consistency proof for M, or A, respectively, providled M, or A is
consistent. 1 wish to note expressly that Theorem XI (and the
corresponding results for M and A) do not contradict Hilbert's formalist
viewpoint. For this viewpoint presupposes only the existence of a consistency
proof in which nothing but finitary means of proof is used, and it is
conceivable that there exist finitary proofs that cannot be expressed in the
formalism of Pie., the formal system of Principia Mathematica) (or of M or
A). (Italics in original, Godel(6], p. 195, Bold in mine.)

According to Godel, the second incompleteness theorem does not contradict Hilbert's
program, and there may be finitary proofs of Con(P) that cannot be representable in P.
Surpassing the formal systems in representational power could obtain finitary

consistency proofs.

3. Godel’s Speed—up Theorems

Goédel[9] maintained that higher types allow one to prove undecidable Godel sentences
in systems of lower levels4 Let Si be the system of logic of the ith order, the natural

4. The term speed-up is not due to Godel himself, but was introduced by M. Blum(A machine-
independent theory of the complexity of recursive functions, Journal of the Association for
Computing Machinery 14(1967), 322-336.) in terms of complexity theory in computer science.
This phenomenon bhecame a major topic in theoretical computer science and, indeed, the
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numbers being taken as individuals. Then S:; contains the appropriate logical axioms,

variables and quantifiers for natural numbers, for classes of natural numbers, for classes
of classes of natural numbers, and so on, up to classes of the ith type, but no
variables of a higher type. Then, there are properties of S; that are provable in S;,; but
not in S;. On the other hand, if we consider those formulas A that are provable in S; as

well as S;4;, then the following holds: For each function @ that is computable in S

there exist infinitely many formulas A such that if % is the length of a shortest proof
of A in S;i and [ is the length of a shortest proof of A in S;;;, then k> ®(/). He

concluded that

Thus, passing to the logic of the next higher order has the effect, not only of
making provable certain propositions that were not provable before, but also
of making it possible to shorten, by an extraordinary amount, infinitely many

of the proofs already available. (Italics in original, Godel(S], p. 397)

The main result is that there are formulas that can be proved bhoth in S, and S..; but
whose shortest proof in S,+1 is much shorter than that in S, Thus, by successively
adding a higher type one arrives at a sequence of ever stronger systems. In fact, Godel
already addressed the speed-up issue in his previous papers[6,7]. However, there is a
critical difference between “On Formally Undecidable Propositions of Principia Mathe-
matica and Related Systems 1(1931)”[6] and “On the Length of Proofs(1936)"[9). In his
1936 paper, Godel allowed infinitely many proofs with a given number of symbols in his
1931 work.

According to M. Arbib[l], Godel's incompleteness theorem can be removed
incrementally in a mechanical way in what is referred to as a speed-up, which is
analogous to adding of an undecidable sentence, such as a Godel sentence, to an
incomplete logic system. Arbib introduced the proof-measure system to prove that if a
system Li can do some things arbitrarily quicker than L then Li can do some things
that L cannot do at all. Gédel's speed-up theorem is relevant for increasing the range of

the computing machine by adding new instructions. Arbib remarks:

If we add an undecidable axiom to an incomplete logic, not only are there
truths that become theorems for the first time, but also theorems that were

already provable in the old system may have shorter proofs in the new

celebrated P=NP? problem can itself be thought of as a speed-up problem.
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systemll, p. 187]

Arbib’s contribution here is the combination of adding new axiom to a logic system
with adding new instructions to a computing machine. It seems to me a proper
application of Godel's second incompleteness theorem to computer scierice. Nevertheless,

the finite description issue and the consistency issue in effect remains unresolved.

4. Godel’s Program

The Speed-up theorem implies that a certain function has no best argorithms. S.
Feferman([5] articulates the speed-up aspects of Godel's incompleteness theorems from

(;odel’s own footnotes 48a in [6], in which Godel clarified:

As will be shown in Part I of this paper, the true reason for the
incompleteness inherent in all formal systems of mathematics is that the
formation of ever higher types can be continued into the transfinite (see
Hilbert 1926 “Uber das Unendliche,” Mathematische Annalen 95, 161-190),
while in any formal system at most denumerably many of them are available.
For it can shown that the undecidable propositions constructed here become
decidable whenever appropriate higher types are added (for example, the type
@ to the system P). An analogous situation prevails for the axiom of set

theory.

Feferman then calls this Gddel’s doctrine: wherein the unlimited transfinite iteration of
the power—set operation is necessary to account for finitary mathematics. He asserts
that the true reason for the incompleteness phenomena is that the formation of ever
higher types can be continued into the transfinite, both in systems explicitly using types
and in systems of set theory, such as Zermelo-Fraenkel set theory, for which the

(cumulative) type structure is implicit in the axioms[5, p. 229]. Thus one can obtain a
new II ? sentence by adding a higher type to the fixed system. Along this line of

thought, Feferman in 1962 studied the transfinite recursive and concluded that even a
higher type formation cannot be established by the incompleteness property alonel[4].
FFollowing Godell10, p. 150],

there exist certain negative results, such as incompleteness of every
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formalism or the paradox of Richard. But closer examination shows that these
results do not make a definition of the absolute notions concerned impossible
under all circumstances, but only exclude certain ways of defining them, or
at least, that certain very closely related concepts may be definable in an

absolute sense. (Italics in mine).

Thus, Godel's incompleteness theorem does not absolutely close the window to prove
consistency if Hilbert's restrictions with respect to finite procedures are abandoned.
Rather, Godel's theorems open the possibility of further attempts to prove the
consistency of formal systems by adding new axioms and theorems. From this
perspective, consistency proof is not a matter of ultimate mathematical truth, but of
relative truth. In his The Consistency of the Axiom of Choice and of the Generalized
Continuum Hypothesis(1940), therefore, Godel proved that if the set theory - whose
axioms are those of the von Neumann-Bernays system except the axiom of choice - is
consistent, then the theory obtained by adding a strong from of the axiom of choice and

the generalized continuum hypothesis to these axioms is also consistent.

In his “On Completeness and Consistency’[7], Godel generalized his incompleteness
theorem and its mathematical meaning as follows:

To be sure, all the propositions thus constructed are expressible in Z (hence
are number-theoretic propositions); they are, however, not decidable in Z, but
only in higher systems, for example, in that of analysis. In case we adopt a
type-free construction of mathematics, as is done in the axiom system of set
theory, axioms of cardinality (that is, axioms postulating the existence of sets
of ever higher cardinality) take the place of the type extensions, and it
follows that certain arithmetic proposition that are undecidable in Z become

decidable by axioms of cardinality, for example, by the axiom that there exist

sets whose cardinality is greater than every «,, where ay= R, @,y =2 o
(Godell7], p. 237)

In essence, considerations of much higher systems with respect to the relative
consistency may help us to understand how we can actually approach Godel about his

metamathematical program from incompleteness to speed-up theorems.
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