• Title/Summary/Keyword: $Fe_3O_4$ nanoparticles

Search Result 168, Processing Time 0.03 seconds

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

AC Breakdown Voltage and Viscosity of Palm Fatty Acid Ester (PFAE) Oil-based Nanofluids

  • Mohamad, Mohd Safwan;Zainuddin, Hidayat;Ab Ghani, Sharin;Chairul, Imran Sutan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2333-2341
    • /
    • 2017
  • Mineral oils are commonly used as transformer insulation oils but these oils are obtained from non-renewable and non-sustainable sources, which is highly undesirable. For this reason, natural ester oils are now being used in replacement of mineral oils because of their good biodegradability, high cooling stability, good oxidation stability and excellent insulation performance. Nanotechnology has gained prominence in both academic and industrial fields over the years and it has been shown in previous studies that nanoscale materials are useful for transformers due to their favourable dielectric properties. The objective of this study is to compare the AC breakdown voltage and viscosity of natural ester oil with three types of nanofluids. The natural ester oil-based nanofluids are prepared by mixing palm fatty acid ester (PFAE) oil with three types of nanoparticles at a concentration of 0.01 g/l: (1) $Fe_3O_4$ conductive nanoparticles, (2) $TiO_2$ semi-conductive nanoparticles and (3) $Al_2O_3$ insulating nanoparticles. The AC breakdown voltage of the oil samples is analysed using Weibull statistical analysis and the results reveal that the PFAE oil-based $Fe_3O_4$ nanofluid gives exceptional dielectric performance compared to other oil samples, whereby the AC breakdown voltage increases by 43%. It can be concluded that the PFAE oil-based $Fe_3O_4$ nanofluid is a promising dielectric liquid to substitute mineral oils.

Properties of Co-Ferrite Nanoparticles Synthesized by Thermal Decomposition Method

  • Oh, Young-Woo;Liu, J.P.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.123-125
    • /
    • 2006
  • Co-ferrite nanoparticles have been synthesized by the decomposition of iron(III) acetylacetonate, $Fe(acac)_3$ and Co acetylacetonate, $Co(acac)_2$ in benzyl/phenyl ether in the presence of oleic acid and oleyl amine at the refluxing temperature of $295^{\circ}C$/$265^{\circ}C$ for 30 min. before cooling to room temperature. Particle diameter detected by PSA can be turned from 4 nm to 20 nm by seed-mediated growth and reaction conditions. Structural and magnetic characterization of Co-ferrite were measured by use of HRTEM, SAED (selected area electron diffraction), XRD and SQUID. The as-synthesized Co-ferrite nanoparticles have a cubic spinel structure and coercivity of 20 nm $CoFe_{2}O_{4} nanoparticles reached 1 kOe at room temperature and 18 kOe at 10 K.

The Preparation of Magnetic Chitosan Nanoparticles with GABA and Drug Adsorption-Release (GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.541-549
    • /
    • 2020
  • The Drug Delivery System (DDS) is defined as a technology for designing existing or new drug formulations and optimizing drug treatment. DDS is designed to efficiently deliver drugs for the care of diseases, minimize the side effects of drug, and maximize drug efficacy. In this study, the optimization of tripolyphosphate (TPP) concentration on the size of Chitosan nanoparticles (CNPs) produced by crosslinking with chitosan was measured. In addition, the characteristics of Fe3O4-CNPs according to the amount of iron oxide (Fe3O4) were measured, and it was confirmed that the higher the amount of Fe3O4, the better the characteristics as a magnetic drug carrier were displayed. Through the ninhydrin reaction, a calibration curve was obtained according to the concentration of γ-aminobutyric acid (GABA) of Y = 0.00373exp(179.729X)-0.0114 (R2 = 0.989) in the low concentration (0.004 to 0.02 wt%) and Y = 21.680X-0.290 (R2 = 0.999) in the high concentration (0.02 to 0.1 wt%). Absorption was constant at about 62.5% above 0.04 g of initial GABA. In addition, the amount of GABA released from GABA-Fe3O4-CNPs over time was measured to confirm that drug release was terminated after about 24 hr. Finally, GABA-Fe3O4-CNPs performed under the optimal conditions were spherical particles of about 150 nm, and it was confirmed that the properties of the particles appear well, indicating that GABA-Fe3O4-CNPs were suitable as drug carriers.

Carbon Sphere/Fe3O4 Nanocomposite for Li/air Batteries (리튬/공기 이차전지용 카본미소구체/Fe3O4 나노복합체)

  • Park, Chang Sung;Park, Yong Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • In this article, we report the fabrication and characterization of carbon sphere/$Fe_3O_4$ nanocomposite for Li/air batteries. $Fe_3O_4$ nanoparticles are dispersed homogeneously on the surface of carbon spheres in an attempt to enhance the low conductivity of oxide catalyst ($Fe_3O_4$). The carbon sphere/$Fe_3O_4$ nanocomposite could offer wide surface area of $Fe_3O_4$ and increased carbon/catalyst contact area, which lead to enhanced catalytic activity. The electrode employing carbon sphere/$Fe_3O_4$ nanocomposite presented relatively low overpotential and stable cyclic performance compared with the electrode employing carbon sphere.

Antioxidative Activity of Galic acid-functionalized ZnO Nanoparticles

  • Choi, Kyong-Hoon;Kim, Ho-Joong;Park, Bong Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.380.1-380.1
    • /
    • 2016
  • In this study, we report a novel antioxidant ZnO nanoparticle that is newly designed and prepared by simple surface modification process. Antioxidative functionality is provided by the immobilization of antioxidant of 3,4,5-trihydroxybenzoic acid (galic acid, GA) onto the surface of ZnO nanoparticles. Microstructure and physical properties of the ZnO@GA nanoparticles were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR) and steady state spectroscopic methods. The antioxidative activity of ZnO@GA was also evaluated using ABTS (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Notably, ZnO@GA showed strong antioxidative activity in spite of the conjugation process of GA on the ZnO surface. These results provide that GA-coating onto ZnO nanoparticles may offer an intriguing potential for biomedical devices as well as nanomaterials.

  • PDF

Gas Sensing Properties of Au-decorated NiO Nanofibers (Au 촉매금속이 첨가된 NiO 나노섬유의 가스 검출 특성)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.296-300
    • /
    • 2017
  • NiO nanofibers with Au nanoparticles were synthesized by sol-gel and electrospinning techniques, in which the reduction process by ultraviolet exposure is included for the growth of Au nanoparticles in the electrospinning solution. FE-SEM(Field Emission Scanning Electron Microscopy), TEM(Transmission Electron Microscopy) revealed that the synthesized nanofibers had the diameter of approximately 200 nm. X-ray diffraction showed the successful formation of Au-decorated NiO nanofibers. Gas sensing tests of Au-decorated NiO nanofibers were performed using reducing gases of CO, and $C_6H_6$, $C_7H_8$, $C_2H_5OH$. Compared to as-synthesized NiO nanofibers, the response of Au-loaded NiO nanofibers to CO gas was found to be about 3.4 times increased. On the other hand, the response increases were only 1.1-1.3 times for $C_6H_6$, $C_7H_8$, and $C_2H_5OH$.

Synthesis and Characterization of CoFe2O4/SiO2 using Cobalt Precursors from Recycling Waste Cemented Carbide (폐 초경합금에서 추출된 Co를 이용한 CoFe2O4/SiO2 합성 및 특성평가)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Yoo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.454-457
    • /
    • 2011
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$, particles using recycled $Co_3O_4$ and their surface coating with silica using micro emulsion method. Firstly, the $Co_3O_4$ powders were separated from waste cemented carbide with acid-base chemical treatment. The cobalt ferrite nanoparticles with the size 10 nm are prepared by thermal decomposition method using recycled $Co_3O_4$. $SiO_2$ was coated onto the $CoFe_2O_4$ particles by the micro-emulsion method. The $SiO_2$-coated $CoFe_2O_4$ particles were studied their physical properties and characterized by X-ray diffraction (XRD), high resolution-transmission electron microscopy (TEM) analysis and CIE Lab value.

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF) (은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구)

  • Uhm, Young-Rang;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.