$NiAl_2O_4$ nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. $Ni(NO_3)_2{\cdot}6H_2O$ and $Al(NO_3)_3{\cdot}9H_2O$ were used for the precursor in order to synthesize $NiAl_2O_4$ nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at $800{\sim}1100^{\circ}C$ for 2h. The average size and distribution of synthesized $NiAl_2O_4$ powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized $NiAl_2O_4$ powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized $NiAl_2O_4$ powder increased with an increasing heating temperature. The synthesized $NiAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscopy(FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain $NiAl_2O_4$ spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.
We demonstrated heat generation efficiency of the magnetic hyperthermia system to find optimal condition using gelatin tissue phantom. Magnetic hyperthermia induction can be used to make heat generation with different concentration of $Fe_3O_4$ iron oxide inside tissue phantom and magnetically labeled cells by applying AC magntic field at a frequency of 145 kHz. It was observed that the maximum temperature achieved in the magnetic gelatin tissue phantom increased with the concentration of $Fe_3O_4$ iron oxide and alternating magnetic field intensity. Results were discussed with respect to further optimization of therapeutic technique for biomedical application with modified functional nanoparticles.
DC 스퍼터를 이용하여 은(Ag) 나노입자를 입도 0.2~3 ${\mu}m$ 크기를 갖는 페롭스카이트(Perovskite) $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$(LSCF) 입자 표면에 코팅하여 복합재를 제조하였다. 제조된 LSCF/Ag 복합재에서 Ag 나노입자는 수 나노입자 크기로 형성되었으며 Ar가스 분위기에서 $800^{\circ}C$ 열처리 후에도 Ag입자가 응집되는 현상이 없어 안정적으로 증착되었음을 확인하였다. LSCF 표면에 Ag나노입자 코팅양이 2.11 wt.%까지 증가함에 따라 Fourier Transform Infrared Spectroscopy(FT-IR) 분광기의 파수가 크게 변하여 강한 결합이 형성되어 있으며, Ag 코팅 전후 결정 구조의 변화는 없으나 M$\ddot{o}$ssbauer 분광 분석으로 확인한 결과 $Fe^{4+}$ 이온이 감소하면서 $Fe^{3+}$ 이온이 증가하여 LSCF의 전자 가에 변화가 생김을 확인 할 수 있었다.
본 연구에서는 자성을 이용하여 재수득이 가능한 광 촉매 물질인 $ZnFe_2O_4@SnO_2@TiO_2$ core-shell nanoparticles (NPs)를 3단계 과정을 통해 합성하였다. 구조적 특성은 X-ray diffraction (XRD) 분석으로 확인하였다. Spinel 구조의 $ZnFe_2O_4$와 tetragonal 구조의 $SnO_2$와 anatase 구조의 $TiO_2$가 합성된 것을 확인하였다. 합성한 물질의 자기적 성질은 vibrating sample magnetometer (VSM)으로 확인하였다. Core 물질인 $ZnFe_2O_4$의 포화자화 값은 33.084 emu/g으로 확인하였다. $SnO_2$와 $TiO_2$층의 형성의 결과, 두께 증가로 인한 자성은 각각 33, 40% 감소하였으나 재수득이 가능한 충분한 자성을 가지는 것을 확인하였다. 합성된 물질의 광 촉매 효율은 methylene blue (MB)를 사용하여 측정하였다. Core 물질의 효율은 4.2%로 확인하였고 $SnO_2$와 $TiO_2$ shell 형성의 결과 각각 73%와 96%로 증가하였고 높은 광 촉매 효율을 가지는 것을 확인하였다. 또한 항균 특성은 대장균(E. Coli)과 황색포도상구균(S. Aureus)을 사용하여 억제 영역을 확인하였다. Shell이 형성되면서 더 넓은 억제 영역이 형성되었고 이는 광 촉매 효율을 측정한 결과와 일치하는 것을 확인하였다.
최근 들어 바이오 의약품으로 응용 가능한 자성 나노 입자에 대한 많은 연구가 이루어지고 있으며, 바이오 의약품으로 응용이 가능하려면 상온에서 초상자성의 특성을 가져야만 한다. 초상자성 나노 입자의 제작이 가능한 졸-겔 법을 이용하여 초상자성 나노 입자 $Ni_{0.9}Zn_{0.1}Fe_2O_4$를 제조하여 입자의 크기 및 자기적 성질을 DTA/TGA, x-선 회절법, SEM 측정과 $M\ddot{o}ssbauer$ 분광법, 진동시료 자화율 측정기(VSM)를 이용하여 연구하였다. DTA/TGA, SEM 및 x-선 회절실험으로부터 $300^{\circ}C$에서 열처리한 입자가 순수한 cubic spinel 구조를 가지며, 평균입자 크기가 10nm인 균일한 구형상 임을 알 수 있었다. $M\ddot{o}ssbauer$ 분광실험으로 $300^{\circ}C$에서 열처리한 입자가 상온에서 초상자성의 특성을 가지고 있음을 알 수 있었으며 13K에서 573K가지 $M\ ddot{o}ssbauer$ 스펙트럼을 취하였을 때 77 K까지는 sextet의 공명흡수선(준강자성체)으로 나타났고 130K이상에서는 가운데 doublet의 공명흡수선이 나타나 400K에서는 sextet과 doublet의 면적비가 같아짐을 알 수 있었다. 13K에서의 초미세자기장은 $H_{hf}(B)=532kOe,\;H_{hf}(A)=507 kOe$이며, VSM 측정 결과로부터 초상자성의 특성을 잃어버리는 차단온도 $T_B$는 250 K로 결정하였다. 또한 자기이방성상수 $K=1.0{\times}10^6\;erg/cm^3$, 완화시간상수 ${\tau}_0=5.0{\times}10^{-13}$ s의 값을 얻었으며, 교류 발열 측정기를 이용하여 자기발열 상태를 측정한 결과 자기발열은 온열온도인 $43.6^{\circ}C$로 나타났다.
네오디뮴 폐자석 침출액으로부터 희유금속인 네오디뮴을 회수하기 위해서는 네오디뮴과 같이 침출되는 철의 부가가치를 높이는 연구가 필요하다. 본 연구에서는 네오디뮴과 같이 침출되는 철의 유용자원화를 위한 기초연구로 철 나노분말 제조하는 실험을 수행하였다. 본 연구는 $FeCl_3$ 용액을 철 분말 원료로, 분산제는 $Na_4O_7P_2$와 Polyvinylpyrrolidone를 이용하였고, 환원제로는 $NaBH_4$, 철 나노분말 핵생성 촉진제 시드(seed)로 염화팔라듐을 사용하였다. 제조한 철 나노분말을 XRD, 전자현미경(SEM) 및 PSA 등을 이용하여 분말의 형상 및 크기 등을 분석하였다. 철과 $NaBH_4$의 농도비가 1 : 5이며, 반응시간이 30분 이상인 경우에서 철 분말이 제조되었으며, 이때 철 분말은 구형이었으며, 입도는 약 50 nm ~ 100 nm 크기였다. 분산제 $Na_4O_7P_2$의 경우 100 mg/L에서 철이온의 제타포텐셜이 음의 값을 가지므로 100 mg/L로 일정하게 하고, PVP와 Pd의 농도를 다양하게 하였을 경우, $FeCl_3$와 PVP와 Pd의 질량비 1 : 4 및 1 : 0.001에서, 분산이 양호하고, 입도 100 nm 크기인 철 나노분말을 합성하였다.
본 연구에서는 중금속 7종(Cu, Cd, Cr, As(III), As(V), Zn, Ni) 및 나노입자 5종(CuO, ZnO, NiO, $TiO_2$, $Fe_2O_3$)에 대한 독성을 수계 대표 생물종인 녹조류 Chlorella vulgaris를 이용한 생물검정법으로 평가하였다. 조류에 미치는 영향은 흡광도, 클로로필 및 개체수 측정에 대한 결과를 통합하여 평가하였다. 중금속의 통합결과독성($TEC_{50}$) 순서는 Cr ($0.7mgL^{-1}$) > Cu ($1.7mgL^{-1}$) > Cd ($3.2mgL^{-1}$) > Zn ($3.9mgL^{-1}$) > Ni ($13.2mgL^{-1}$) > As(III) ($17.8mgL^{-1}$) ${\gg}$ As(V) (> $1000mgL^{-1}$)로 나타났다. 중금속은 측정종말점에 따라 일부 상이한 민감도와 독성이 조사되었다. 나노입자의 독성($TEC_{50}$) 순서는 ZnO ($2.4mgL^{-1}$) > NiO ($21.1mgL^{-1}$) > CuO ($36.6mgL^{-1}$) > $TiO_2$ ($62.5mgL^{-1}$) > $Fe_2O_3$ ($82.7mgL^{-1}$)로 나타났다. 나노입자는 측정종말점간에 비슷한 민감도와 독성을 보였다. 따라서 오염물의 독성을 평가하기 위해서 단일 방법에 의한 결과보다는 다양한 측정종말점의 통합결과에 근거한 접근이 적절할 것이다.
A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
Advances in nano research
/
제16권4호
/
pp.325-340
/
2024
There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.
We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.