• Title/Summary/Keyword: $Fe_3$Al

Search Result 1,825, Processing Time 0.025 seconds

Electronic Structures of half-metallic phase of ternary Fe_2TX (T = 3d transition metal and X = Al, Si) (절반금속 Fe_2TX 화합물의 전자구조 연구 (T = 3d 전이금속; X = Al, Si))

  • Park, Jin-Ho;Kwon, Se-Kyun;Byung ll Min
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.584-584
    • /
    • 2000
  • Electronic structures of ordered Fe$_3X (X = Al, Si), and their derivative ternary alloys of Fe_2TX (T = 3d transition metal) have been investigated by using the linearized muffin-tin orbital (LMTO) band method. The role of the coupling between substituted transition metal and its neighbors is investigated by calculating the magnetic moments and local density of states (LDOS). It is shown that it is essential to include the coupling beyond nearest neighbors in obtaining the magnetic moment of Fe alloy. The preferential sites of T impurities in Fe_3X are determined from the total energy calculations. The derivative ternary alloys of Fe_2TX have characteristic electronic structures of semi-metal for Fe_2VAI and (nearly) half-metal for Fe_2TAI (T = Cr, Mn) and Fe_2TSi (T = V, Cr, Mn)

  • PDF

Niobian Sphene from the McDonald Pegmatite Mine, Bancroft, Ontarion, Canada: Consideration of Substitutions (카나다 온타리오 밴크로프트의 맥도날도 페그마타이트 광산에서 산출된 Nb Sphene: 원소 치환에 관한 고찰)

  • ;Donald R. Peacor
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.8-10
    • /
    • 1989
  • Sphene from the McDonald pegmatite near Bancroft, Ontario, Canada was analyzed using EPMA. It contains 4.3 to 6.3 weight percent of Nb2O5 with an average formula Ca1.02(Ti0.62Al0.22Nb0.07Fe0.06Ta0.01)Si0.99(O4.85F0.16). Three types of subtitutions are possible; 1)2Ti4+=(Nb, Ta)5+ + (Al, Fe3+), 2) Ti + O = (Al, Fe3+) + (F, OH), and 3) 2Ti + O = Fe2+ + (Nb, Ta)5+ + (F, OH). T재 different schemes of substitutions for balancing the analysis are considered when the iron is either all ferric or all ferrous. Assuming stoichiometry fo Ca and Si, a general formula derived from the two different schemes is Ca(Ti0.64Al0.22Fe3+0.06-X {{{{Fe_{x}^{2+} }} Nb0.01)Sio4.80-XF0.16(OH)0.04+x.

  • PDF

Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy (Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.

The Effect of Rapid Solidification Process on the Oxidation Behavior of Fe-Cr-Al Alloys at Elevated Temperature (Fe-Cr-Al 합금의 급속응고가 고온산화거동에 미치는 영향)

  • 문병기;김재철;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 1996
  • Fe-Cr-Al and Fe-Cr-Al-Hf alloys prepared either by arc melting or by single roll casting(melt spinning) were exposed to air isothermally at 900~$1100^{\circ}C$. Whisker-like alumina was observed on the surface of the specimens when oxidized at $900^{\circ}C$, but convoluted alumina above $1000^{\circ}C$. All the Hf-free specimens and Hf-added specimens produced by single roll casting formed only external scale mainly composed of $Al_2O_3$ after oxidation at 900~$1100^{\circ}C$ for 100 hours, but Hf-added specimen produced by arc melting formed Hf-rich internal oxides below the thin external $Al_2O_3$ scale except at $900^{\circ}C$. Most of the rapidly solidified Fe-Cr-Al alloys showed smaller weight gains than conventionally casted ones besides Hf-added one oxidized at $1100^{\circ}C$.

  • PDF

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.

Mechanical Aalloying Behavior of $Al_3$Hf 및 $Al_3$Ta Intermetallic Compounds by SPEX Mill and the Effect of Ternary Additions on the Formation of $Ll_2$ Phase (SPEX mill을 이용한 $Al_3$Hf 및 $Al_3$Ta 금속간화합물의 기계적합금화 거동과 $Ll_2$상형성에 미치는 제 3 원소 첨가의 영향)

  • Lee, Seong-Hun;Choe, Jong-Hyeon;Kim, Jun-Gi;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.569-574
    • /
    • 2000
  • To improve the ductility of $Al_3Hf$ and $Al_3Ta$ intermetallic compounds, which are the potential temperature structural materials, the mechanical alloying behaviour and the effect of ternary additions on the $Ll_2$ phase formation were investigated. During the mechanical alloying by the SPEX mill, the $Ll_2$ $Al_3Hf$ intermetallic compound was formed after 6 hours of milling in AL-25%Hf system. In AL-25%Ta system, however, only the $D0_{22}$ $Al_3Ta$ intermetallic compound was formed until 30 hours of milling and the $Ll_2$ phase was not observed. In AL-12.5%M-25%Ta(M=Cu, Zn, Mn, Fe, Ni) systems, the additions of Cu and Zn had no effect on the $D0_{22}$ structure of the binary $Al_3Hf$ and the additions of Mn, Fe and Ni produced the amorphous phase. Therefore it was considered that these ternary additions could not overcome the energy difference between $Ll_2$ and $D0_{22}$ structures in the $Al_3Hf$ intermetallic compound. In AL-12.5%M-25%Hf(M=Cu, Zn, Mn, Fe, Ni)systems, the additions of Cu and Zn did not affect the $Ll_2$ structure of the binary $Al_3Hf$ but the additions of oMn, Fe and Ni produced the amorphous phase as they did in AL-12.5%M-25%Ta systems. Therefore, it was considered that the Ni, Mn and Fe additions promote the formation of amorphous phase in $Al_3X$ intermetallic compounds.

  • PDF

Rapid Sintering and Synthesis of Nanostuctured FeCrAlSi-Al2O3 Composite by High-Frequency Induction Heating (고주파유도 가열에 의한 나노구조의 FeCrAlSi-Al2O3 복합재료의 합성 및 급속소결)

  • Du, Song Lee;Cho, Sung-Hun;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Sang-Whan;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.231-236
    • /
    • 2011
  • Nanopowder of $Fe_2O_3$, Al, Cr and Si was fabricated by high energy ball milling. A dense nanostuctured $A_2O_3$ and $6.06Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ composite was simultaneously synthesized and consolidated using high frequency induction heated sintering method within 1 minute from mechanically activated powders of $Fe_2O_3$, Al, Cr and Si. The grain sizes of $Al_2O_3$ and $Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ in composite are 80 and 18 nm, respectively.

The Aluminizing of Boronized Low Carbon Steel (침붕처리한 저탄소강의 알루미늄 확산처리에 관한 연구)

  • 윤영식;김한삼;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.120-131
    • /
    • 1996
  • In order to improve the mechanical properties and the high temperature oxidation resistance, aluminizing was carried out at a temperature range between $850^{\circ}C$ and $1050^{\circ}C$. The pack cementation process was used to produce uniform layer. After each treatment, the microhardness and the characteristics of high temperature oxidation were tested to evaluate the properties of the aluminide layer. The aluminide layer consisted of FeAl above $1000^{\circ}C$, and $Fe_2Al_5$ below $900^{\circ}C$, and the mixed phase of FeAl and $Fe_2Al_5$ between 90$0^{\circ}C$ and $1000^{\circ}C$ in case of the mixture powder consisted of 5%Al+5%$NH_4Cl+90%AL_2O_3$. The microhardness of $Fe_2Al_5$ was obtained much as the twice as that of FeAl. As the aluminizing temperature and time increased, the thickness of aluminide increased. After aluminizing, the high temperature oxidation resistance was remarkably improved. The high temperature oxidation resistance of FeAl was superior to the resistance of high temperature oxidation of $Fe_2Al_5$.

  • PDF

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit (운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

Effects of Fe, Mn Contents on the Al Alloys and STD61 Steel Die Soldering (Al 합금과 STD61강의 소착에 미치는 첨가원소 Fe, Mn의 영향)

  • Kim, Yu-Mi;Hong, Sung-Kil;Choi, Se-Weon;Kim, Young-Chan;Kang, Chang-Seog
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.169-173
    • /
    • 2012
  • Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at $680^{\circ}C$. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as $Al_2Fe$, $Al_3Fe$, and $Al_5Fe_2$ formed in the die soldering layers.