• Title/Summary/Keyword: $Fe_2SiO_4$

Search Result 563, Processing Time 0.029 seconds

A Study on the Recovery of a Metalic Fe-particle from the Steelmaking E.A.F. Slag by the Magnetic Separation (전기로 제강 슬래그에서 자력선별에 의한 지금의 회수)

  • 현종영;김형석;신강호;조동성
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.3-8
    • /
    • 1997
  • The EA.F. sleelmaking slag (slag that follow) of a cnmvany 1 Co.. containzd a simple substance of a metal, wustlte (FeO), magnetite (Fe,O,), gehlenite (CaAl,SiO,), monlicellite (CaMgSiO,), dc. To recovere a metal (Fe grade . t95%) in the slag, it is desirable that the particles of a metal are isolated from thc slag and madc for a liberated subslance. Then, the liberaled melal is easlly recoveled by a magnetic separation. If thc rcclarnalcd slag, the sizc of which ranges under 40 nun, have a mulli-stage crushing, the most of a metal in thc slag is simply isolaled as a liberated subslance. If the mad, lhat is a liberated subslance and a sphere, is recovered by a magnetic field intensity. the minimum intensity, at which a metal is attracted, is approximately IOOG and did no1 dcpcnd on the particle size of a metad in the same particles. TIe recovered material. that contdined a iron (Fe) over 95% is a metal which is crushed slag by l00G in the multi-stage. If the magnetic field intcns~ty increase, the recovery mcrcasc, but the concentration grade decrease Bewusc thc concentration eams more and more impurities, iron oxide and the coml~ound of alkali earth element. 'll~ercforc If the rccla~nated slag have the multi-stage crushing, the metal is almostly recovered in the crushed slag by lO0G on each particles. If the slag, used as a rcclamatian lhat is a amount of 350,000 tan from I Co., was undcr the multistage crushing and then separaled by 100gauss, it is possible to recova a metal approximately 2.500 Ion, lhat is 0.73% of n ~eclamated slag. in 304.7 mm particles and to recover 4.200 tan in 0.3-1.7 mm particles , that is 1.2% nf a rcclamated slag, in a year. Therefore, ihe told recoverable meld is 6,700 ton, that is 19% of a reclmated slag, in a year, too.

  • PDF

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

  • Chen Xinhua;Dong Junhua;Han Enhou;Ke Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.315-318
    • /
    • 2008
  • The atmospheric corrosion performance of Al-alloying, Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at $30^{\circ}C$ and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% $NaHSO_{3}$ (pH~4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage; and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of $Fe_{3}O_{4}$ and $\alpha-FeOOH$. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as $FeAl_{2}O_{4}$, $(Fe,\;Si)_{2}(Fe,\;Al)O_{4}$). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere.

Geochemical Exploration Technics in the Pungchon Limestone Area (풍촌 석회암지대 탐사에 적용될 새 지화학탐사법 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.369-381
    • /
    • 1990
  • Most of significant ore deposits in South Korea such as the Sangdong W - Mo, the Yeonhwa Pb-Zn and the Geodo Cu-Fe skarn ore deposits occur at the southern limb of the Hambaeg syncline in the Taebaeg Basin. The mineralization took place in the interbedded limestone of the Myobong Formation and the Pungchon limestone of the Great Limestone Group of the Cambrian age, generally striking E-W and dipping 25-30 degrees north. There are no outcrops of the skarn-type orebody at the northern limb of the syncline. In order to find a clue of a possible hidden orebody localized at the limestones in the northern limb, a lithogeochemical exploration by using carbon isotope and some elements such as Si, Ca, Fe and Al at the Sangdong Mine area has been attempted as for a modelling study. For this study, 45 samples from the Pungchon limestone which do not show any megascopic indication of mineralization have been taken in both the mineralized zone and the unminerallized zone at the Sangdong Mine area. Analytical data show that there are big differences in the contents of CaO and $Al_2O_3$ between the Pungchon limestone of the mineralized zone and that of the unmineralized zone. Carbon isotope data exhibit that ${\delta}^{13}C$ values of the Pungchon limestone in the mineralized zone are highter than those in the unmineralized zone. The difference in the analytical values of CaO, $Al_2O_3$ and the carbon isotope between the mineralized and the unmineralized zones is as follows ; Unminerallized zone Mineralized zone CaO 51.3% 43.5% $Al_2O_3$ 0.6% 2.4% ${\delta}^{13}C$ -0.39 permil -0.56 permil $Fe_2O_3$ 0.9% 1.4% $SiO_2$ 3.0% 2.4% The decrease in the Si content of the Pungchon limestone in the mineralized zone is contrary to the result of the previous study (Moon, 1987). On the basis of identification of the increase in the Al content of the limestone in the mineralized zone, it could be deduced that the decrease in the Si content of the Pungchon limestone might be due to the result of increase in the alteration products mainly occurred along fracture-system such as joint cracks or minor faults and that the phenomena shown by the Si and Al content in the mineralized zone might be derived from the thermal effect of granite extended mineralizing activity to the overlied limestone on the surface. Higher mean values of Fe and Al as well as lower mean values of carbon content and the ${\delta}^{13}C$ than mean values of those in the Pungchon limestone at the northern limb of the Hambaeg Syncline may be applicable in exploration for blind orebodies.

  • PDF

Magnetic Properties of Sr-ferrite Powder Prepared by Intensive Mechanical Milling Technique

  • Kwon, H.W.;Bae, J.W.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.118-120
    • /
    • 2003
  • As an alternative promising way of producing high coercivity Sr-ferrite for a permanent magnet application, intensive mechanical milling process was applied to the raw materials of the Sr-ferrite with different composition. Synthesising reactivity for the Sr-ferrite of the mechanically milled raw material containing $SrCO_3$, $La_2O_3$, $Fe_2O_3$, $Co_3O_4$, and $SiO_2$ was inferior to that of the raw material containing $SrCO_3$ and $Fe_2O_3$, The Sr-ferrite prepared from mechanically milled raw materials had profoundly improved magnetic properties compared to the Sr-ferrite prepared by conventional method. Beneficial effect of the substituting ($La_2O_3$, $Co_3O_4$) and additive ($SiO_2$) oxides for improving the magnetic properties was not exploited in the Sr-ferrite prepared from the mechanically milled raw material. The Sr-ferrite powder prepared from the mechanically milled raw materials was magnetically isotropic in nature.

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit (운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

Bias Voltage Dependence of Magnetic Tunnel Junctions Comprising Double Barriers and CoFe/NiFeSiB/CoFe Free Layer (CoFe/NiFeSiB/CoFe 자유층을 갖는 이중장벽 자기터널접합의 바이어스전압 의존특성)

  • Lee, S.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.120-123
    • /
    • 2007
  • The typical double-barrier magnetic tunnel junction (DMTJ) structure examined in this paper consists of a Ta 45/Ru 9.5/IrMn 10/CoFe7/$AlO_x$/free layer/AlO/CoFe 7/IrMn 10/Ru 60 (nm). The free layer consists of an $Ni_{16}Fe_{62}Si_8B_{14}$ 7 nm, $Co_{90}Fe_{10}$ (fcc) 7 nm, or CoFe $t_1$/NiFeSiB $t_2$/CoFe $t_1$ layer in which the thicknesses $t_1$ and $t_2$ are varied. The DMTJ with an NiFeSiB-free layer had a tunneling magnetoresistance (TMR) of 28%, an area-resistance product (RA) of $86\;k{\Omega}{\mu}m^2$, a coercivity ($H_c$) of 11 Oe, and an interlayer coupling field ($H_i$) of 20 Oe. To improve the TMR ratio and RA, a DMTJ comprising an amorphous NiFeSiB layer that could partially substitute for the CoFe free layer was investigated. This hybrid DMTJ had a TMR of 30%, an RA of $68\;k{\Omega}{\mu}m^2$, and a of 11 Oe, but an increased of 37 Oe. We confirmed by atomic force microscopy and transmission electron microscopy that increased as the thickness of NiFeSiB decreased. When the amorphous NiFeSiB layer was thick, it was effective in retarding the columnar growth which usually induces a wavy interface. However, if the NiFeSiB layer was thin, the roughness was increased and became large because of the magnetostatic $N{\acute{e}}el$ coupling.

Decomposition Behavior of Ferro-Si3N4 for High Temperature Refractory Application (고온 내화물 응용을 위한 질화규소철 (Ferro-Si3N4)의 분해거동)

  • Choi, Do-Mun;Lee, Jin-Seok;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.582-587
    • /
    • 2006
  • Decomposition behavior of $ferro-Si_3N_4$was investigated with varying temperature and holding time in mud components for high temperature refractory applications. Porosities gradually increased with increasing temperature and holding time due to the carbothermal reduction of $Si_3N_4\;and\;SiO_2$. Silicon monoxide (SiO) as a intermediate resulted from evaporation of $Si_3N_4\;and\;SiO_2$ reacted with C sources to generate needle-like ${\beta}-SiC$ and Fe in $Si_3N_4$ acted as a catalyst in order to enhance growth of SiC grain with the preferred orientation. SiC generation yield increased with increasing holding time, all of the $Si_3N_4\;and\;SiO_2$ affected on SiC formation up to 2h. However, SiC generation was only dependent on residual $SiO_2$ over 2h, because the carbothermal reduction reaction of $Si_3N_4$ was no longer possible at that time.

Synthesis, Characterization, and Catalytic Applications of Fe-MCM-41 (Fe-MCM-41의 제조, 물성조사 및 촉매적 응용 연구)

  • Yoon, Sang Soon;Choi, Jung Sik;Choi, Hyeong Jin;Ahn, Wha Seung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.215-221
    • /
    • 2005
  • A Fe-containing mesoporous silica (Fe-MCM-41) in which part of Si in the framework was replaced by Fe(Si-O-Fe) has been successfully prepared using $Fe^{3+}$ salt by a direct synthesis route. Physical properties of the material were characterized by XRD, $N_2$ adsorption, SEM/TEM, UV-vis and FT-IR spectroscopies. Fe-MCM-41 exhibited high catalytic activity in phenol hydroxylation using $H_2O_2$ as oxidant, giving phenol conversion of ca. 60% at $50^{\circ}C$ [phenol : $H_2O_2$ = 1:1, water solvent]. Fe-MCM-41 was also applied to the growth of CNTs, utilizing a thermal-CVD reactor using acetylene gas, which demonstrated that multi-wall CNTs could be prepared efficiently using the Fe-MCM-41 catalyst.