• Title/Summary/Keyword: $Fe_2SiO_4$

Search Result 563, Processing Time 0.027 seconds

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.

Effect of Silicate Ions on the Hydration of 4CaO · Al2O3 · Fe2O3 with Gypsum

  • You, Kwang-Suk;Ahn, Ji-Whan;Kim, Hwan;Goto, Seishi
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.642-646
    • /
    • 2004
  • Na$_2$Si$_2$O$_{5}$ added to the solution affects the hydration of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ with calcium sulfate. The reaction between 4CaOㆍAl$_2$O$_3$ Fe$_2$O$_3$and CaSO$_4$ㆍ 2$H_2O$ decrease with increasing amount of Na$_2$Si$_2$O$_{5}$ in solution, owing to low hydraulic reactivity of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$by the adsorption of silicate ions on the surface of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles. The dissolution rate of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles deceased with the increase of the concentration of silicate ion in solution. When the 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ particles was hydrated in gypsum - Na$_2$Si$_2$O$_{5}$ solution, the hydration was retarded and the rate could not discriminate between formation of ettringite and that of monosulfate, and it stopped in high concentration of silicate ions. However, silicate ion did not any effect on the dissolution rate of gypsum.ypsum.

Effect of Spinning Speed on 29Si and 27Al Solid-state MAS NMR Spectra for Iron-bearing Silicate Glasses (시료의 회전 속도가 함철 비정질 규산염의 고상 NMR 신호에 미치는 영향)

  • Kim, Hyo-Im;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.295-306
    • /
    • 2018
  • Despite the utility of solid-state NMR, NMR studies of iron-bearing silicate glasses remain a challenge because the variations in the peak position and width with increasing iron content reflect both paramagnetic effect and iron-induced structural changes. Therefore, it is essential to elucidate the effect of temperature on the NMR signal for iron-bearing silicate glasses. Here, we report the $^{29}Si$ and $^{27}Al$ MAS NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ and $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ (anorthite) glasses with varying spinning speed to interpret the NMR spectra for iron-bearing silicate glasses. The increase in the spinning speed results in an increase in the sample temperature. The current NMR results allow us to understand the origins of the changes in NMR signal with increasing iron content and to provide information on the dipolar interaction between nuclear spins. The $^{29}Si$ NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ glass and $^{27}Al$ NMR spectra for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses show that the peak shape and position of iron-bearing glasses do not change with increasing spinning speed up to 30 kHz. These results suggest that the NMR signal in the Fe-bearing glasses may stem from the 'survived nuclear spins' beyond the cutoff radius from the Fe, not from the paramagnetic shift. Based on the current results, the observed apparent shifts toward lower frequency of Al peak for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses with increasing $Fe_2O_3$ at all spinning speed (15 kHz to 30 kHz) indicate the increase in the fraction of ${Q^4}_{Al}$(nSi) with lower n (i.e., 1 or 2) with increasing $Fe_2O_3$ and the spatial proximity between Fe and ${Q^4}_{Al}$(nSi) with higher n (i.e., 3 or 4). The present results show that changes in the NMR signal for iron-bearing silicate glasses reflect the actual iron-induced structural changes. Thus, it is clear that the applications of solid-state NMR for iron-bearing silicate glasses hold strong promise for unraveling the atomic structure of natural silicate glasses.

Initial oxidation behavior in High temperature of low carbonsteel containing small amount Ni element. (미량 Ni 함유 저 합금강의 고온초기 산화거동)

  • 손근수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.179-184
    • /
    • 1999
  • When the steel containing Si is oxidated in hi temperature, Re2O3, Red scale is made on the metal side as the spike phase, and this scale invasion into matrix. Therefore, it affects the feature, after rolling. It is reported that the role of Si is FeO/Fe2SiO4 eutectic compound, but Si can not affect pure iron independently. There must be Ni, then the spike phase can exist. Prominence and depression made by Ni that is necessity at the process to work iron. Therefore, in this study after the change of the amount of Ni in pure iron and steel and oxidation, the structure of the oxide and the surface, and the distribution of the elements were considered. In conclusion, at 100$0^{\circ}C$, 110$0^{\circ}C$, 120$0^{\circ}C$ the curves of oxidation weight are all S curves. Especially, in the beginning of oxidation as the amount of Ni increase, the amount of oxidation also increase. Practical steel has less oxidation than pure steel added Ni. There is much FeO in Fe-Ni alloy, compare to practical steel which has much Fe3O4. Especially, we could know considerable Ni was concentrated on the metal side in Fe-Ni alloy, practical steel. and the surface of the scale.

  • PDF

A Study on the Properties of Substituted Ferrite (Fe-Al-Ga-Si) (치환형 Ferrite (Fe-Al-Ga-Si)의 특성 연구)

  • Choi, Seung-Han
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.439-443
    • /
    • 2011
  • The crystal structure and magnetic properties of a new solid solution type ferrite $(Fe_2O_3)_5-(Al_2O_3)_{3.4}-(Ga_2O_3)_{0.6}-SiO$ were investigated using X-ray diffraction and M$\"{o}$ssbauer spectroscopy. The results of the X-ray diffraction pattern indicated that the crystal structure of the sample appears to be a cubic spinel type structure. The lattice constant (a = 8.317 ${\AA}$) decreases slightly with the substitution of $Ga_2O_3$ even though the ionic radii of the Ga ions are larger than that of the Al ions. The results can be attributed to a higher degree of covalency in the Ga-O bonds than in the Al-O and Fe-O bonds, which can also be explained using the observed M$\"{o}$ssbauer parameters, which are the magnetic hyperfine field, isomer shift, and quadrupole splitting. The drastic change in the magnetic structure according to the Ga ion substitution in the $ (Fe_2O_3)_5(Al_2O_3)_{4-x}(Ga_2O_3)_xSiO$ system and the low temperature variation have been studied through a M$\"{o}$ssbauer spectroscopy. The M$\"{o}$ssbauer spectrum at room temperature shows the superpositions of two Zeeman patterns and a strong doublet. It shows significant departures from the prototypical ferrite and is comparable with the diluted ferrite. The doublet of spectrum at room temperature appears to originate from superparamagnetic clusters and also the asymmetry of the doublet appears to be caused by the preferred orientation of the crystallites. The M$\"{o}$ssbauer spectra below room temperature show various complicated patterns, which can be explained by the freezing of the superparamagnetic clusters. On cooling, the magnetic states of the sample were various and multi critical.

Relation of the Skarnized Calcareous Nodules in the Hwajeol Formation and the Deep Concealed Orebody (화절층내 석회질 단괴(團塊)의 스카른화와 심부잠두(深部潛頭) 광체와의 관계)

  • Moon, Kun-Joo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.335-346
    • /
    • 1991
  • It is observed that calcareous nodules of the Hwajeol Formation are locally skarnized in the Sangdong district, in which the skarn mineralization extends 5 Km westward from the Sangdong mine area to the Hwajeolchi area. After a hidden granite beneath the Sangdong mine was discovered by exploration drillings, the exploration teams of the Sangdong mine and the Korean Mining Promotion Corporation have assumed that the skarn nodule of the Hwajeol Formation was derived from emplacement of a granite in deep place and the occurrence of hidden ore bodies below the skarn, and they have discovered high grades of tungsten orebody in the same horizon of the Sangdong ore body. Mutual genetic relatioships between epidote and garnet may be explained by following chemical reactions $Ca_2FeA_{12}$ $Si_3O_{12}(OH)+CaCO_3=Ca_3(Fe,\;Al)_2$ $SiO_{12}+1/2CO_2+1/2H^+Ca_3FeSi_3O_{12}+SiO_2+CO_2=2CaFeSi_{12}O_6+CaCO_3+1/2O_3$. It is concluded that epidote and garnet are useful as target minerals indicating a potential occurrence of deep seated hidden ore body. Since the epidote may inform the emplacement of the granite, while the garnet in the skarn nodule of the Hwajeol Formation may reflect a strong hydrothermal mineralization taking place from the depth.

  • PDF

Effect of Sulfur on the High-temperature Oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si Alloys (Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si 합금의 고온 산화에 미치는 S의 영향)

  • Lee, Dong Bok;Lee, Kyong-Hwan;Bae, Geun Soo;Cho, Gyu Chul;Jung, Jae Ok;Kim, Min Jung
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.386-391
    • /
    • 2017
  • Two kinds of steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at $900^{\circ}C$ for 50-350 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of $Cr_2O_3$ as the major oxide and $Cr_2MnO_4$ as the minor one through preferential oxidation of Cr and Mn. They additionally formed $SiO_2$ particles around the scale/alloy interface as well as inside the matrices. The high affinity of Mn with S led to the formation of scattered MnS inclusions particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance, because it deteriorated the scale/alloy adherence so as to accerelate the adherence and compactness of the formed scales.

Growth of Textured CoFe2O4 Thin Films on Platinized Silicon Prepared by a Sol-Gel Method

  • Mustaqima, Millaty;Lee, Min Young;Kim, Deok Hyeon;Lee, Bo Wha;Liu, Chunli
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.227-231
    • /
    • 2014
  • We fabricated textured polycrystalline $CoFe_2O_4$ thin films on $Pt(111)/TiO_2/SiO_2/Si$ substrate through a sol-gel method. We varied the thickness of the films, by using precursor solutions with different concentrations of 0.1, 0.2, and 0.3 M, and by depositing 5, 8, or 10 layers on the substrate by spin-coating. X-ray diffraction spectra indicated that when the precursor concentration of the solution was higher than 0.1 M, the spin-coated films were preferentially oriented in the <111> direction. Inspection of the surface morphology by scanning electron microscopy revealed that $CoFe_2O_4$ thin films prepared with 0.2 M solution and 5-time spin-coatings had smoother surface, as compared to the other conditions. Each coating had an average thickness of about 50 nm. The magnetic properties measured by vibrating sample magnetometer showed magnetic anisotropy, as evidenced from the difference in the in-plane and out-of-plane hysteresis loops, which we attributed to the textured orientation of the $CoFe_2O_4$ thin films.

Thermodynamic of Phosphorus in FeO-MnO-CaO-SiO2-MgOsatd. Slag Systems (FeO-MnO-CaO-SiO2-MgOsatd. 슬래그에서의 P의 열역학적 거동)

  • Cho, Moon Kyung;Park, Kyung Ho;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.188-194
    • /
    • 2009
  • Recently, new extraction technology for manganese nodule has been developed as alternative noble metallic resources. It is important to understand thermodynamic behaviors of phosphorus in low basic slag system from the viewpoint of the refining processing optimization. Thermodynamic behaviors of phosphorus in the $FeO-MnO-CaO-SiO_2-MgO_{satd.}$ slag system were investigated at 1723 K with various oxygen potential and slag composition of low basicity. The experimental results for dependence of phosphorus on oxygen potential and slag basicity indicated that the dissolution mechanism of phosphorus into slag of low basicity could be derived as follows; $[P]+5/4O_2+(O^{2-})=({PO_{3.5}}^{2-})$ Present experimental results implied that stability of phosphorus in slag would be depended on both of $O^{2-}$ (basicity) and content of $Ca^{2+}$ in molten slag. The thermodynamic effect of FeO, MnO and $Na_2O$ on low basicity on phosphate capacity was discussed.

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.5
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.