• Title/Summary/Keyword: $Fe_2O_3$-doped

Search Result 198, Processing Time 0.028 seconds

Fabrication of Fe-doped LaGaO3 Perovskite Mixed Conductor and Improvement of Oxygen Permeability by Screen Printing Coating (Fe가 Doping 된 LaGaO3 폐롭스카이트 혼합 전도체의 제조 및 코팅에 따른 산소투과 성능 향상)

  • Lim, Kyung Tae;Cho, Tong Lae;Lee, Kee Sung;Woo, Sang Kuk;Park, Kee Bae;Kim, Jong Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.137-146
    • /
    • 2001
  • 고상 반응법을 이용하여 $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-{\delta}}$ 분말을 합성하고 혼합전도체 분리막을 소결하여 제조하였다. 제조된 분리막은 $LaGaO_3$에 일치하는 폐롭스카이트 결정구조를 나타내었으며 95% 이상의 높은 상대밀도를 나타내었다. 스크린 프린팅 방법으로 $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ 후막을 disk의 양 표면에 코팅하였으며 코팅 막은 비교적 치밀한 미세구조를 나타내었다. 코팅되지 않은 분리막과 코팅된 분리막의 산소투과 성능을 비교 실험한 결과 $850^{\circ}C$에서 동일한 두께의 코팅된 분리막의 정상상태 산소 투과 유속이 $0.7{m{\ell}}/min.cm^2$ 정도로 코팅되지 않은 분리막에 비해 약 2~3배로 높게 나타났다.

  • PDF

Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation (균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가)

  • Hwang D. S;Lee N. H;Lee H. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

Transparent Electrode Characteristics of SnO2/AgNi/SnO2 Multilayer Structures (SnO2/AgNi/SnO2 다중층 구조의 투명 전극 특성)

  • Min-Ho Hwang;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.500-506
    • /
    • 2024
  • The transparent electrode characteristics of the SnO2/AgNi/SnO2 (OMO) multilayer structures prepared by sputtering were investigated according to the annealing temperature. Ni-doped Ag of various compositions was selected as the metal layer and heat treatment was performed at 100~300℃ to evaluate the thermal stability of the metals. The manufactured OMO multilayer structures were heat treated for 6 hours at 400~600℃ in an N2 atmosphere. The structural, electrical, and optical properties of the OMO structures before and after annealing were evaluated and analyzed using a UV-VIS spectrophotometer, 4-point probe, XPS, FE-SEM, etc. OMO with Ni-doped Ag shows improved performance due to the reduction of structural defects of Ag during annealing, but OMO structure with pure Ag shows degradation characteristics due to Ag diffusion into the oxide layer during high-temperature annealing. The figure of merit (FOM) of SnO2/Ag/SnO2 was highest at room temperature and gradually decreased as the heat treatment temperature increased. On the other hand, the FOM value of SnO2/AgNi/SnO2 mostly showed its maximum value at high temperature(~550℃). In particular, the FOM value of SnO2/Ag-Ni (3.2 at%)/SnO2 was estimated to be approximately 2.38×10-2-1. Compared to transparent electrodes made of other similar materials, the FOM value of the SnO2/Ag-Ni (3.2 at%)/SnO2 multilayer structure is competitive and is expected to be used as an alternative transparent conductive electrode in various devices.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Luminescence properties of Eu3+ : RE2O3 [RE = Gd, Y, La] nanocrystallines prepared by solvothermal reaction method

  • Chung, Jong Won;Yang, Hyun Kyoung;Moon, Byung Kee;Choi, Byung Chun;Jeong, Jung Hyun;Kim, Kwang Ho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.6-9
    • /
    • 2012
  • Eu3+-doped RE2O3 (RE = Gd, Y and La) phosphors were prepared by solvothermal reaction method and their crystalline structure, phase transformation and surface morphologies were investigated by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM). The obtained RE2O3:Eu3+ phosphors are nanocrystalline-sized. The luminescence properties of Eu3+ ions in different host materials, namely, Gd2O3, Y2O3 and La2O3 have been investigated. PACS number: 32.50.+d, 78.55.-m, 81.40.Tv.

Colossal Magnetoresistance and Mossbauer Studies of La-Ca-Mn-O Compound Doped with $^{57}Fe$ ($^{57}Fe$를 미량 치환한 La-Ca-Mn-O의 초거대자기저항과 Mossbauer분광학연구)

  • 박승일;김성철
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.335-340
    • /
    • 1998
  • Colossal magnetoresistance $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ material has been produced by a metal-salt routed sol-gel process method. Magnetic properties of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been studied with x-ray diffraction, Rutherford back-scattering spectroscopy(RBS), vibrating sample magnetometer, and Mossbauer spectroscopy. Crystalline $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was perovskite cubic structure with a lattice parameter $a_0=3.868$\AA$$. And there was no appreciable change in the value of the lattice parameter when a small amount (x=0.01) of iron was added. However, Mossbauer and VSM data indicate the Curie temperature of the $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ decreased from 282 to 270 k and also the saturation magnetization from 84 to 81 emu/g at 77 K. Mossbauer spectra of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been taken at various temperatures ranging form 4.2 K to room temperature. Analysis of $^{57}Fe$ Mossbauer data in terms of the local configurations of Mn atoms has permitted the influence of the magnetic hyperfine interactions to be monitored. The isomer shifts show that the charge state of all Fe ions are ferric. The magnetoresistance of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was about 33 % at semiconductor-metal transition temperature $T_{SC-M}=250K$.

  • PDF

Direct measurement of Space-charge field in a $LiNbO_3$ crystal doped with MgO and $Fe_2O$ using second harmonic generation (MgO와 $Fe_2O$가 첨가된$ LiNbO_3$ 단결정에서 제 2 고조파 발생을 이용한 공간전하장의 직접 측정)

  • 김봉기;홍미연;이범구
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.284-285
    • /
    • 2000
  • 광굴절률 현상은 optical signal processing과 홀로그램 기억소자로 널리 응용 될 수 있기 때문에 지금까지 광범위하게 연구되어져 왔다. 광굴절률 현상에서 중요한 변수는 빛이 있는 동안 drift, diffusion 과 photovoltaic current와 같은 전하 운반 메카니즘을 통해서 local charge의 재분포에 따른 공간전하장(Space-charge field, $E_{sc}$ )이다. 지금까지 single beam에 의한 공간전하장을 측정하는 방법으로 birefringenc $e^{1.2}$ 와 interference metho $d^{3}$을 이용하여 굴절률 변화를 측정함으로써 얻을 수 있었다. 그러나 이런 방법들은 공간전하장의 변화를 측정하기위해서 전기광학계수를 측정하여 얻는 간접적인 방법이고 또한 실험방법도 다소 복잡하다. 따라서 본 투고에서는 이미 발표된 광굴절률 현상시 제 2 고조파 세기(SHG)의 변화로부터 공간전하장을 간단하게 측정하는 방법을 이용하여 congruent, MgO가 4mole%, F $e_2$O가 0.1mole% 첨가된 LiNb $O_3$ 단결정의 공간전하장에 대해서 연구를 하였다. 이 방법은 전기광학물질인 LiNb $O_3$에서 SHG 위상정합조건이 dc 전기장에 의존하는 성질을 이용한 것이다. 그리고 온도가 일정할 경우 전기장의 변화에 따라 SHG의 크기가 변함을 이용하였다. (중략)

  • PDF

Characteristics of Al-doped ZnO thin films prepared by sol-gel method (졸-겔법으로 제조한 Al-doped ZnO 박막의 특성에 관한 연구)

  • Kim, Yong-Nam;Lee, Seoung-Soo;Song, Jun-Kwang;Noh, Tai-Min;Kim, Jung-Woo;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • AI-doped ZnO(AZO) thin films have been fabricated on glass substrate by sol-gel method, and the effect of Al precursors and post-annealing temperature on the characteristics of AZO thin films was investigated. The sol was prepared with zinc acetate, EtOH, MEA and Al precursors. In order to dope Al in ZnO, two types of aluminum nitrate and aluminum chloride were used as Al precursor. Zinc concentration was 0.5 mol/l and the content of Al precursor was 1 at% of Zn in the sol. The sol was spin-coated on glass substrate, and the coated films were annealed at 550ue for 2 hand were post-annealed at temperature ranges of $300{\sim}500^{\circ}C$ for 2 h in reducing atmosphere ($N_2/H_2$= 9/1). Structural, electrical and optical propertis of the fabricated AZO thin films were analyzed by XRD, FE-SEM, AFM, hall effect measurement system and UV-visible spectroscopy. Optical and electrical properties of AZO thin films prepared with aluminum nitrate as Al precursor were better than those of films prepared with aluminum chloride. The electrical resistivity and the optical transmittance of films decreased with increasing post-annealing temperatures. The minimum electrical resistivity of $2{\times}10^{-3}$ and the maximum optical transmittance of 91% were obtained for the AZO thin films post-annealed at $550^{\circ}C\;and\;300^{\circ}C$, respectively.

Improved Physical Properties of Ni-doped $BiFeO_3$ Ceramic

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.250-250
    • /
    • 2012
  • Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Fe_3O_4$ and NiO powders were mixed with the stoichiometric proportions, and calcined at $450^{\circ}C$ for 24 h to produce $BiFe_{1-x}Ni_xO_3$. Then, the samples were directly put into the oven, which was heated up to $800^{\circ}C$ and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-{\mu}m$ diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. $BiFe_{0.95}Ni_{0.05}O_3$ exhibits the rhombohedral perovskite structure R3c, similar to $BiFeO_3$. The lattice constant of $BiFe_{0.95}Ni_{0.05}O_3$ is smaller than of $BiFeO_3$ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of $BiFe_{0.95}Ni_{0.05}O_3$ exhibits a clear hysteresis loop at 300 K. The magnetic properties of $BiFe_{0.95}Ni_{0.05}O_3$ were improved at room temperature because of the existence of structurally compressive stress.

  • PDF