• Title/Summary/Keyword: $FeS_2$

Search Result 3,151, Processing Time 0.026 seconds

Integration Process and Reliability for $SrBi_2$ $Ta_2O_9$-based Ferroelectric Memories

  • Yang, B.;Lee, S.S.;Kang, Y.M.;Noh, K.H.;Hong, S.K.;Oh, S.H.;Kang, E.Y.;Lee, S.W.;Kim, J.G.;Shu, C.W.;Seong, J.W.;Lee, C.G.;Kang, N.S.;Park, Y.J.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.141-157
    • /
    • 2001
  • Highly reliable packaged 64kbit ferroelectric memories with $0.8{\;}\mu\textrm{m}$ CMOS ensuring ten-year retention and imprint at 125^{\circ}C$ have been successfully developed. These superior reliabilities have resulted from steady integration schemes free from the degradation, due to layer stress and attacks of process impurities. The resent results of research and development for ferroelectric memories at Hynix Semiconductor Inc. are summarized in this invited paper.

  • PDF

The Hyperfine Interaction for the FeIn2S4 by Mössbauer Spectroscopy (뫼스바우어 효과를 통한 FeIn2S4에서의 Fe2+ 초미세 상호 작용 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.30-33
    • /
    • 2007
  • The $FeIn_2S_4$ exhibits an inverse spinel which Fe ions are occupied to the octahedral(B) site, while In ions are occupied to both the tetrahedral(A) and the octahedral(B) site. The $N\'{e}el$ temperature($T_N$) is determined to be 13 K. The effective moment of $FeIn_2S_4$ found to be $5.094{\mu}_B$ from the fit of Curie-Weiss inverse susceptibility for the temperature range over $T_N$, implying angular momentum contribution. The angular momentum contribution is shown in $M\"{o}ssbauer$ spectra for the antiferromagnetic ordering region($T{\leq}\;13K$), too. A weak $Fe^{2+}(B)-S^2-Fe^{2+}(B)$ interaction is responsible for a low $N\'{e}el$ temperature($T_N$) in $FeIn_2S_4$ system. The temperature dependence of electric quadrupole interaction is explained by z-axial crystalline field energy.

Improvement of Sewage Sludge Dewaterability using Fe(II)/Na2S2O8 (Fe(II)/Na2S2O8을 이용한 하수슬러지 탈수능 개선)

  • Han, Jun-Hyuk;Nam, Se-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.23-28
    • /
    • 2022
  • In order to investigate the degree of sewage sludge dewaterability using Fe(II)/Na2S2O8, STTF, SCST, water content, TS, VS, TB-EPS as carbohydrate and Protein were measured. The dosage of Na2S2O8 was varied from 0.4 to 0.7 mmol/gVS and molar ratio of Fe(II)/Na2S2O8 was varied from 0.5 to 0.7 mol/mol. According to the increase of the dosage of Na2S2O8 and Fe(II)/Na2S2O8 molar ratio, STTF and SCST increased from 1.00 to 15.00 and 4.51, respectively. Water content decreased to 82.6%. TB-EPS as carbohydrate and protein decreasing rate also increased to 37.16% and 57.34%, respectively. Especially, Na2S2O8 0.6 mmol/gVS and Fe(II)/Na2S2O8 0.6 mol/mol condition, water content dercreased to 83.1%, STTF and SCST increased to 13.64 and 4.19 which showed the cost effective improvement of dewaterability. It is considered that SO4- radical generated by Fe(II)/Na2S2O8 degraded EPS and converted bound water to free water.

Effect of Minerals surface characteristics On Reduction Dehalogenation of chlorination solvents in water-FeS/FeS$_2$ system

  • 김성국;허재은;박세환;장현숙;박상원;홍대일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.108-111
    • /
    • 2000
  • FeS/FeS$_2$ minerals have been known to be potentially useful reductant to the removal of common organic contaminants in groundwater and soil. This research is aimed at improving our understanding of factors affecting the pathways and rates of reductive transformation of Hexachloroethane by catalytical iron minerals in natural system. Hexachloroethane is reduced by FeS/FeS$_2$ minerals under anaerobic condition to tetrachloroethylene and trichloroethylene with pentachloroethyl radical as the intermediate products. The kinetics of reductive transformations of the Hexachloroethane have been investigated in aqueous solution containing FeS, FeS$_2$. The proposed reduction mechanism for the adsorbed nitrobenzene involves the electron donor-acceptor complex as a precursor to electron transfer. The adsorbed Hexachloroethane undergo a series of electron transfer, proton transfer and dehydration to achieve complete reduction. It can be concluded that the reductive transformation reaction takes place at surface of iron-bearing minerals and is dependent on surface area and pH. Nitrobenzene reduction kinetics is affected by reductant type, surface area, pH, the surface site density, and the surface charge. FeS/FeS$_2$-mediated reductive dechlorination may be an important transformation pathway in natural systems.

  • PDF

Preparation and Thermal Stability of FeS2 Fine Powder for Thermal Battery (열전지용 FeS2 미세 분말의 제조 및 열적 안정성)

  • Choi, Yusong;Yu, Hye-Ryeon;Cheong, Haewon;Cho, Sungbaek;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.72-77
    • /
    • 2014
  • Microstructure and thermal stability of mechanically ball milled $FeS_2$ were investigated. The average particle size and distribution of $FeS_2$ powder were changed in two steps with the increased ball milling time. The average particle size drastically decreased from $98.4{\mu}m$ to 1.01 and $0.89{\mu}m$ after ball milling of 10 h and 30 h, respectively. However, the distribution was broad and a shoulder appeared at $2{\mu}m$ because the pulverization was still in process at 10 h ball milling. After 60 h ball milling, the distribution became narrower. After ball milling of 120 h, the average particle size increased because of $FeS_2$ particle agglomeration. Therefore, the particle size distribution became broaden again. Finally, after ball milling of 170 h, $FeS_2$ with the narrowest size distribution can be obtained. Thermal stability of $FeS_2$ was unstable as the $FeS_2$ particle was pulverized. Therefore, the activation energy of the fine size particles is 27% lower than that of the as-received $FeS_2$.

Differences in the Electronic Structures of Bulk and Powder FeV2O4 Spinel Oxide Investigated by Using Synchrotron Radiation (방사광을 이용한 FeV2O4 스피넬 산화물의 덩치상태와 분말상태의 전자구조 차이 연구)

  • Hwang, Ji-Hoon;Kim, D.H.;Lee, Eun-Sook;Kang, J.S.;Kim, W.C.;Kim, C.S.;Han, S.W.;Hong, S.C.;Park, B.G.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.198-203
    • /
    • 2011
  • The electronic structure of ferrimagnetic spinel oxide of $FeV_2O_4$ has been investigated by employing soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD). The Fe 2p and V 2p XAS spectra show that the valence states of Fe and V ions are ${\sim}Fe^{2.3+}$ mixed-valent states and ${\sim}V^{3+}$ states, respectively. In Fe 2p XMCD spectra, finite XMCD signals are observed for divalent $Fe^{2+}$ states only, but not for $Fe^{3+}$ states. This finding indicates that the magnetic moments of $Fe^{2+}$ ions are ordered ferromagnetically but that those of $Fe^{3+}$ ions are cancelled, implying that $Fe^{2+}$ ions play an important role in determining magnetic properties of $FeV_2O_4$.

Effect of Conductive Additives on $FeS_2$ Cathode ($FeS_2$ 양극에 미치는 전도성 첨가제의 영향)

  • Choi, Yu-Song;Cheong, Hae-Won;Kim, Ki-Youl;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.224-230
    • /
    • 2012
  • Thermal batteries have excellent mechanical robustness, reliability, and long shelf life. Due to these characteristics as well as their unique activation mechanism, thermal batteries are widely adopted as military power sources. Li(Si)/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as molten salt electrolyte. However, it is known that Li(Si)/$FeS_2$ thermal batteries have high internal resistance. Especially, $FeS_2$ cathode accounts for the greater part of internal resistance in unit cell. Many efforts have been put into to decrease the internal resistance of thermal batteries, which result in the development of new electrode material and new electrode manufacturing processes. But the applications of these new materials and processes are in some cases very expensive and need complicated additional processes. In this study, internal resistance study was conducted by adding carbon black and carbon nano-tube, which has high electron conductivity, into the $FeS_2$ cathode. As a results, it was found that the decrease of internal resistance of $FeS_2$ cathode by the addition of carbon black and carbon nano-tube.

Corrosion of Fe-2%Mn-0.5%Si Steels at 600-800℃ in N2/H2O/H2S Atmospheres

  • Kim, Min-Jung;Park, Sang-Hwan;Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.201-206
    • /
    • 2011
  • Fe-2%Mn-0.5%Si alloys were corroded at 600, 700 and $800^{\circ}C$ for up to 70 h in 1 atm of $N_2$ gas, or 1 atm of $N_2/H_2O$-mixed gases, or 1 atm of $N_2/H_2O/H_2S$-mixed gases. Oxidation prevailed in $N_2$ and $N_2/H_2O$ gases, whereas sulfidation dominated in $N_2/H_2O/H_2S$ gases. The oxidation/sulfidation rates increased in the order of $N_2$ gas, $N_2/H_2O$ gases, and, much more seriously, $N_2/H_2O/H_2S$ gases. The base element of Fe oxidized to $Fe_2O_3$ and $Fe_3O_4$ in $N_2$ and $N_2/H_2O$ gases, whereas it sulfidized to FeS in $N_2/H_2O/H_2S$ gases. The oxides or sulfides of Mn or Si were not detected from the XRD analyses, owing to their small amount or dissolution in FeS. Since FeS was present throughout the whole scale, the alloys were nonprotective in $N_2/H_2O/H_2S$ gases.

New data on Phase Relations in the System Cu-Fe-Sn-S (4성분계 Cu-Fe-Sn-S의 상관관계에 대한 새로운 데이터)

  • Jang, Young-Nam;Moh, Guenter
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 1991
  • Two solid solution-type phases has been experimentally found in the quaternary system Cu-Fe-Sn-S:$(Fe, Cu, Sn)_{1+x}$ and $Cu_{2-x}Fe_(1+x}SnS_4$. These solid solutions are stable around the CuS-FeS-SnS referecne plane in the composition tetrahedron. One is the sphalerite-type monosulfide solid solution which has a extensive stability range with varying degrees of sulfur/metal ratio 9.7-1.0/1.0. The other is tetrahedrite-type phase $Cu_{2-y)Fe_{1+y}SnS_4(y_{max}=0.4)$ which is stable along the $Cu_2FeSnS_4-FeS$ tie line, but shows no phase transformation in the subsolidus range and decomposes incongruently at the range of 835-862${\circ}C$, depending on the compositional variation. Particularly, the latter phase shows the characteristic superstructure reflections, indicating that it is a derivative of sphalerite structure. The stability field of these two sphalerite-type phases are defined on the basis of diffraction pattern and optical homogeneity of the synthetic materials at the temperature range of 700-400${\circ}C$.

  • PDF