• Title/Summary/Keyword: $Fe^{3+}$ detection

Search Result 149, Processing Time 0.02 seconds

Determination of Trace Metals in Atmospheric Particulates by Ion Chromatography

  • Lee Yong-Keun;Kim Hak-Chul;Lee Dong Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1045-1049
    • /
    • 1994
  • A simple and fast ion chromatographic method is developed for the determination of transition metals such as Fe, Cu, Ni, Zn and Co in atmospheric particulates. The method involves acid digestion, on-column preconcentration, and subsequent ion chromatogaphic detection. The precision of the method is less than 3${\%}$ RSD at parts per billion level for the metals studied. No significant interferences are observed. The results obtained with this method agree well with those by ICP-AES.

Extraction of Phthalate Esters in Environmental Water Samples Using Layered-Carbon Magnetic Hybrid Material as Adsorbent Followed by Their Determination with HPLC

  • Wang, Weina;Wu, Qiuhua;Zang, Xiaohuan;Wang, Chun;Wang, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3311-3316
    • /
    • 2012
  • In this paper, a layered-carbon-$Fe_3O_4$ (LC-$Fe_3O_4$) hybrid material was synthesized through a facile one-pot solvothermal method and used as the adsorbent for the preconcentration of some phthalate esters (dimethyl phthalate, diethyl phthalate, diallyl phthalate, diisobutyl phthalate and benzyl butyl phthalate) in water samples. The effects of the adsorbent dosage, extraction time, the solution pH and salinity on the adsorption of the phthalate esters (PAEs) were investigated. The magnetic nanocomposite adsorbent could remove and enrich the PAEs from water samples efficiently. After the adsorption, the analytes were desorbed and then determined by high performance liquid chromatography-ultraviolet detection. Under the optimum conditions, the enrichment factors of the method for the analytes were in the range from 161 to 180. A linear response with peak area as the quantification signal was observed in the concentration range from 0.5 to $100ng\;mL^{-1}$. The limits of detection (S/N = 3) of the method were between 0.08 and $0.1ng\;mL^{-1}$. The method was suitable for the determination of trace phthalate esters in environmental water samples.

Polarographic Determination of Iron(Ⅱ), Iron(Ⅲ) and Total Iron in the Presence of DTPA (DTPA 존재하에서 폴라로그래피법에 의한 2가 철, 3가 철 및 전체 철의 정량)

  • Se Chul Sohn;Moo yul Suh;Tae Yoon Eom
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1053-1059
    • /
    • 1993
  • The determination of iron(Ⅱ), iron(Ⅲ) and total iron was studied by differential-pulse and Tast polarography in 0.1 M acetate buffer solution at pH 4.60, Half wave potentials of iron(Ⅱ)-DTPA and iron(Ⅲ)-DTPA complexes were -0.150V vs. SCE reference electrode. In the presence of DTPA the redox process of iron(Ⅱ) and iron(Ⅲ) was reversible. Linear calibration plots were obtained for iron(Ⅱ) and iron(Ⅲ) concentration of 0.2∼1.0 mM. The detection limits of iron(Ⅱ) and iron(Ⅲ)by Tast polarographic method were 0.05 mM and 0.07 mM, respectively.

  • PDF

Manufacturing technique and provenance Analysis of Bronze Artefacts excavated from Pungnap earthen fortress (풍납토성 출토 청동유물의 제작기술 및 납 원료의 산지추정)

  • Han, Woo Rim;Kim, So Jin;Han, Min-su;Hwang, Jin-ju;Lee, Eun-woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.110-119
    • /
    • 2015
  • Bronzes, Earthenwares and various artifacts were excavated from Pungnap earthen fortress in the early Baekje age in Korea. This study was performed in order to identify the manufacture technology of bronze artefacts and provenance of lead in bronzes. Microstructure and chemical composition results show that 3 of them are Cu-Sn-Pb alloys in which an intentional lead addition was carried out and one is tin bronze showing straight twin structure within crystal grains. Also $CuFeS_2$ or $Cu_5FeS_4$ was used as raw materials through the detection of S and Fe as trace elements. The lead isotope results could be matched with one of the zones of southern Korea and China on the East Asian map. This results shows that data were plotted either in zone 2 or zone 3 of the South Korean galena map. However, one of bronze artifacts was matched with the zone of Northern China.

Determination of nickel and cadmium in fish, canned tuna, black tea, and human urine samples after extraction by a novel quinoline thioacetamide functionalized magnetite/graphene oxide nanocomposite

  • Naghibzadeh, Leila;Manoochehri, Mahboobeh
    • Carbon letters
    • /
    • v.26
    • /
    • pp.43-50
    • /
    • 2018
  • In this research, a novel and efficient quinoline thioacetamide functionalized magnetic graphene oxide composite ($GO@Fe_3O_4@QTA$) was synthesized and utilized for dispersive magnetic solid phase preconcentration of Cd(II) and Ni(II) ions in urine and various food samples. A number of diverse methods were employed for characterization of the new nanosorbent. The design of experiments approach and response surface methodology were applied to monitor and find the parameters that affect the extraction performance. After sorption and elution steps, the concentrations of target analytes were measured by employing FAAS. The highest extraction performance was achieved under the following experimental conditions: pH, 5.8; sorption time, 6.0 min; $GO@Fe_3O_4@QTA$ amount, 17 mg; 2.4 mL $1.1mol\;L^{-l}$ $HNO_3$ solution as the eluent and elution time, 13.0 min. The detection limit is 0.02 and $0.2ng\;mL^{-1}$ for Cd(II), and Ni(II) ions, respectively. The accuracy of the new method was investigated by analyzing two certified reference materials (sea food mix, Seronorm LOT NO 2525 urine powder). The interfering study revealed that there are no interferences from commonly occurring ions on the extractability of target ions. Finally, the new method was satisfactorily employed for rapid extraction and determination of target ions in urine and various food samples.

Determination and Preconcentration of Copper(Ⅱ) after Adsorption of Its Cupferron Complex onto Benzophenone

  • Lee, Taik-Jin;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.861-865
    • /
    • 2002
  • A sensitive method for the determination of trace copper(II) after the preconcentration by adsorbing its cupferron complex onto microcrystalline benzophenone was developed.Several experimental conditions such as the pH of sample solution,concentration of cupferron, amount of benzophenone and atirring time were optimized. Trace compper(II) in 100mL solution was chelated with $3.0\;{\times}\;10^3$ M cupferron at pH 5.0. After 0.20g benzophenone, The benzophenone adsorbing Cu-cupferron complex was filtered and then Cu-cupferron complex was desorbed in 10 mL ethanol. Copper was determined by a flame atomic absorption spectrophotomethry. The interfering effects of diverse concomitant ions were investigated. Fe(III) interfered seriously with, but the interference by Fe(III) was completely eliminated by adjusting the concentration of copferron to $5.0\;{\times}\;10^3$ M. The detection limit of this method was 8.6${\times}$10 M(5.5 ngmL$^1$). Recoveries of 97% and 96% were obtained for Cu(II) in a stream water and a brass sample, respectively. Based on the results from the experiment. this proposed technique could be applied to the determination of copper(II) in real samples.

Synthesis and Properties of Rhodamine Dye Sensor Material toward detection Response (진단감응 로다민 색소센서재료 합성 및 특성 분석)

  • Kim, Hyung-Joo;Lee, Do-Hyun;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.34-34
    • /
    • 2011
  • Recently, people have concerned about environmental pollution. This environmental pollution occur due to many reasons such as heavy metal ions and anions. In this regard, many researchers have studied organic materials to monitor above reasons to protect environmental pollution. One of the organic materials for this function is chemosensor. This chemosensor has been studied and reported about monitoring toxic heavy metal ions and anions. In this study, the dye sensor was designed and synthesized through reaction of Rhodamine 6G and 1,3-Indanedion. this dye sensor selective detected $Hg^{2+}$ metal ions while showing red color absorption and yellowish-green strong fluorescence emission compared to other heavy metal ions such as $Cu^{2+}$, $Hg^{2+}$, $Ag^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Fe^{3+}$. In this regard, we anticipated that this dye senosr can provide an significant material for monitoring mercury which cause environmental pollution. Thus, We investigated detailed properties of this dye sesnor with using UV-Vis absorption and fluorescent spectrophotometer, Job's plot method for metal binding complex, computational simulated calculation named Material Studio 4.3 suite to approach for electron distribution and HOMO/LUMO.

  • PDF

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Direct Electrochemistry and Electrocatalysis of Myoglobin with CoMoO4 Nanorods Modified Carbon Ionic Liquid Electrode

  • Zhao, Zengying;Cao, Lili;Hu, Anhui;Zhang, Weili;Ju, Xiaomei;Zhang, Yuanyuan;Sun, Wei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • By using ionic liquid 1-hexylpyridinium hexafluorophosphate ($HPPF_6$) based carbon ionic liquid electrode (CILE) as the substrate electrode, a $CoMoO_4$ nanorods and myoglobin (Mb) composite was casted on the surface of CILE with chitosan (CTS) as the film forming material to obtain the modified electrode (CTS/$CoMoO_4$-Mb/CILE). Spectroscopic results indicated that Mb retained its native structures without any conformational changes after mixed with $CoMoO_4$ nanorods and CTS. Electrochemical behaviors of Mb on the electrode were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks from the heme Fe(III)/Fe(II) redox center of Mb appeared, which indicated that direct electron transfer between Mb and CILE was realized. Electrochemical parameters such as the electron transfer number (n), charge transfer coefficient (${\alpha}$) and electron transfer rate constant ($k_s$) were estimated by cyclic voltammetry with the results as 1.09, 0.53 and 1.16 $s^{-1}$, respectively. The Mb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid in the concentration range from 0.1 to 32.0 mmol $L^{-1}$ with the detection limit as 0.036 mmol $L^{-1}$ ($3{\sigma}$), and the reduction of $H_2O_2$ in the concentration range from 0.12 to 397.0 ${\mu}mol\;L^{-1}$ with the detection limit as 0.0426 ${\mu}mol\;L^{-1}$ ($3{\sigma}$).

Modified Glassy Carbon Electrode with Silver Nanoparticles/Polyaniline/Reduced Graphene Oxide Nanocomposite for the Simultaneous Determination of Biocompounds in Biological Fluids

  • Ghanbari, Kh.;Moloudi, M.;Bonyadi, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.361-372
    • /
    • 2019
  • The silver nanoparticles/polyaniline/reduced graphene oxide nanocomposite modified glassy carbon electrode (Ag/PANI/RGO/GCE) was prepared by the electrochemical method. The Ag/PANI/RGO nanocomposite was characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray diffraction (XRD), and electrochemical impedance spectroscopy (ESI). Two electrochemical techniques namely differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were used to the electrochemical behaviors investigation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The Ag/PANI/RGO/GCE exhibited remarkable electrocatalytic activity towards the oxidation reaction of AA, DA, and UA in Britton-Robinson (BR) solution (pH=4.0). Under the optimal conditions, the determinations of AA, DA, and UA were accomplished using DPV. AA-DA and DA-UA peak potential separations were 130 and 180 mV, respectively. For simultaneous detection, the linear response ranges were in the two concentration ranges of 0.05-0.8 mM and 2.0-16.0 mM with detection limit 0.412 μM (S/N = 3) for AA, 0.7-90.0 μM and 90.0-1000.0 μM with detection limit 0.023 μM (S/N = 3) for DA, and 0.8-70.0 μM and 70.0-1000.0 μM with detection limit 0.050 μM (S/N = 3) for UA. This modified electrode showed good sensitivity, selectivity, and stability with applied to determine AA, DA, and UA in human urine and drug.