• 제목/요약/키워드: $Fe^{2+}

Search Result 11,733, Processing Time 0.072 seconds

Analysis of Fe-Deficient Inducing Enzyme and Required Time for Recovery of Nutritional Disorder by Fe-DTPA Treatment in the Fe-Deficient Induced Tomato Cultivars (토마토 품종별 철 결핍 유도후 Fe-DTPA 처리에 의한 영양장애 회복 소요시간과 철 결핍 유발물질 동정)

  • Lee, Seong-Tae;Kim, Min-Keun;Lee, Young-Han;Kim, Young-Shik;Kim, Yeong-Bong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.767-772
    • /
    • 2011
  • The purpose of this study was to find out required time for recovery of nutritional disorder by Fe-DTPA treatment in induced Fe-deficient tomato cultivars and to select stable Fe-chelate in high pH of nutrient solution. The pH levels of nutrient solution were amended with 6.0, 7.0, and 8.0. Then Fe-EDTA (Ethylenediaminetetraacetic acid, ferric-sodium salt), Fe-DTPA (Sodium ferric diethylenetriamine pentaacetate), and Fe-EDDHA (Ethylenediamine-N,N-bis (2-hydroxyphenylacetic acid) ferric-sodium salt)) were treated as Fe $2.0mg\;L^{-1}$ concentration. The Fe-DTPA and Fe-EDDHA were stable in the nutrient solution of pH 6.0~8.0 but Fe-EDTA in nutrient solution of pH 8.0 was to become insoluble by 25%. The Fe $2.0mg\;L^{-1}$ as Fe-DTPA was treated for recovery of Fe deficient tomato seedlings. In case of Redyoyo and Supersunroad cultivars, total chlorophyll and Fe contents of leaves were recovered as much as those of normal leaves in 5 days. The Rafito cultivar for complete recovery was taken 7 days. When Fe $2.0mg\;L^{-1}$ as Fe-DTPA was supplied to Fe-deficient tomato seedlings, in geotype, heme oxigenase recovered as much as normal leaves in 24 hours in the Rafito and Redyoyo. However, it was not remarkable difference by elapsed time in the Supersunroad.

Characteristics of the TCE removal in FeO/Fe(II) System (FeO/Fe(II) 시스템에서 TCE의 제거 특성)

  • Sung, Dong Jun;Lee, Yun Mo;Choi, Won Ho;Park, Joo yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.149-152
    • /
    • 2008
  • The reaction between iron oxide and ferrous iron is known to be the adsorption of ferrous iron onto the oxide surfaces that produces Fe(II)-Fe(III) (hydr)oxides and ferrous oxide oxidized to ferric ion which is the reducing agent of the target compounds. In our investigations on DS/S using ferrous modified steel slag, the results did not follow the trends. FeO and Fe(II), the major component of steel slag, were used to investigate the degradation of TCE. Degradation did not take place for the first and suddenly degraded after awhile. Degradation of TCE in this system was unexpected because Fe(II)-Fe(III) (hydr)oxides could not be produced in absence of ferric oxide. In this study, the characteristics of FeO/Fe(II) system as a reducing agent were observed through the degradation of TCE, measuring byproducts of TCE and the concentration of Fe(II) and Fe(III). Adsorption of ferrous ion on FeO was observed and the generation of byproducts of TCE showed the degradation of TCE by reduction in the system is obvious. However it did not correspond with the typical reducing mechanisms. Future research on this system needs to be continued to find out whether new species are generated or any unknown mineral oxides are produced in the system that acted in the degradation of TCE.

Formation Reaction of Mn-Zn Ferrite by Wet Process (습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF

Electronic and Magnetic Properties of Rare-earth Permanent Magnet : $Nd_2Fe_{14}B$ ($Nd_2Fe_{14}B$ 희토류의 영구자석의 전자기적 물성연구)

  • Min, Byeong-Il;Jeong, Yun-Hui;Yang, Chung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.193-199
    • /
    • 1992
  • 희토류 영구자석, $Nd_2Fe_{14}B$ 화합물에 대한 자체충족적 국재밀도함수근사 전자 구조 계산을 수행하여 이 물질의 전자기적 물성을 연구하였다. LMTO(Linearized Muffin-Tin Orbital)에너지 띠 방법을 사용하여 상자성, 강자성상에서 구한 $Nd_2Fe_{14}B$ 화합물의 에너지 띠구조를 토대로 하여 자성을 포함한 제반 물성, 즉 희토류금속과 천이금속의 결합(bonding)효과, 전기적, 자기적 구조등을 고찰하였다. Boron 원자의 역학은 근접 Fe 원자와의 혼합 상호작용을 통하여 Fe의 원자의 자기모멘트를 많이 줄이는 효과를 주며 또한 구조 안정성에 기여한다는 결과를 얻었다. 강자성상에서의 Fe 원자들의 평균 자기모멘트는 약 2.15 ${\mu}B$로 계산되었는데 이중 Boron 원자로 부터 가장 멀리 떨어져 있으며 12개의 Fe 원자들로 둘러싸인 Fe(j2-site)원자가 가장 큰 값(2.7 ${\mu}B$)의 자기모멘트를 갖고 Boron 원자와의 혼합 상호작용이 가장 큰 Fe(e-site)원자가 가장 작은 값(1.9 ${\mu}B$)의 자기모멘트를 갖는다.

  • PDF

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

Oxidation of trans-[FeH(NCS(Me)-S)(dppe)2]I to trans trans-[FeNCS)2(Ph2P(O)CH2CH2P(O)Ph2)2][I3](dppe=PPh2CH2CH2PPh2) (trans-[FeH(NCS(Me)-S)(dppe)2]I 화합물의 trans-[FeNCS)2(Ph2P(O)CH2CH2P(O)Ph2)2][I3]로 산화)

  • Lee, Ji Hwa;Lee, Soon W.
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.311-315
    • /
    • 2000
  • The Fe(II)-isothiocyanato complex $trans-[FeH(NCS)(dppe)_2]$ (1) eactedwith iodomethane(Mel) to give methyl isothiocyanide-Fe(n) complex, $trans-FeH(NCS(Me)-S)(dppe)_2]I(2)$. Compound 2 was oxidized to $trans-[Fe(NCS)_2(Ph_2P(O)CH_2CH_2P(O)Ph_2)_2][I_3]$ (3), which was structurally characterized by X-ray diffraction. The molecular structure of 3 showed a bent Fe-NCS group, Crystallographic data for 3: triclinic space group P1,a=11.071(2) A,b=12.054(2)A,c=12.121(1)A, $\alpha=101.02(1){\circ}C{\beta}=95.887(9){\circ}Cr=110.34(1){\circ}C$, $Z=1R(wR_2)=0.0567(0.1294)$.

  • PDF

TMA Study on Phase Evolution During Hydrogen-assisted Disproportionation of Nd-Fe-B Alloy

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.229-233
    • /
    • 2011
  • Phase evolution during the hydrogen-assisted disproportionation of $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy was investigated mainly by using a magnetic balance-type thermomagnetic analyser (TMA). In order to avoid any undesirable phase change in the course of heating for TMA, a swift TMA technique with very high heating rate (around 2 min to reach $800^{\circ}C$ from room temperature) was adopted. The hydrided $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy started to be disproportionated in hydrogen from around $600^{\circ}C$, and the alloy after the early disproportionation (from 600 to $660^{\circ}C$) has been partially disproportionated. The partially disproportionated alloy consisted of a mixture of $NdH_x$, $Fe_3B$, ${\alpha}$-Fe, and the remaining undisproportionated $Nd_2Fe_{14}BH_x$-phase. During the subsequent heating to $800^{\circ}C$ in hydrogen, two additional phases of $Fe_{23}B_6$ and $Fe_2B$ were formed, and the material consisted of a mixture of $NdH_x$, $Fe_{23}B_6$, $Fe_3B$, $Fe_2B$, and ${\alpha}$-Fe phases. During the subsequent isothermal holding at $800^{\circ}C$ for 1 hour, the phase constitution was further changed, and one additional unknown magnetic phase was formed. Eventually, the fully disproportionated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy consisted of $NdH_x$, $Fe_{23}B_6$, $Fe_3B$, $Fe_2B$, ${\alpha}$-Fe, and one additional unknown magnetic phase.

Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence (고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성)

  • 조용수;김윤배;박우식;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1995
  • The effects of Nb and Cu additives as will as substitutional Co into $Nd_{4}Fe_{85.5}B_{10.5}$ melt-spun alloy were studied aiming for finding a $\alpha$-Fe based Nd-Fe-B composite alloys with high energy product. The addition of Nb and Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ decreased the average grain size and increased the coercivity up to 207kA/m(2.6kOe), Further-more, the substitution of Co for Fe in $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ alloy resulted in the decrease of the average grain size (<20nm) and improved the hard magnetic properties. The remanence, coercivity and energy product of optimally annealed $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ alloy were 1.345, 219kA/m(2.75kOe) and $95.5kJ/m^{3}$(12MGOe), respectively.

  • PDF

Preparation of hybrid Fe3O4 nanoparticles for biomedical applications (생의학적 응용을 위한 Fe3O4 복합 나노입자의 제조)

  • Bae, Sung-Su;Nguyen, The Dung;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.77-81
    • /
    • 2016
  • Superparamagnetic $Fe_3O_4$ nanoparticles with particle size from 10 to 20 nm were synthesized by coprecipitation method. Subsequently, the $Fe_3O_4$ nanoparticles were used to fabricate $Fe_3O_4/SiO_2$ core-shell nanoparticles by sol-gel method. The $Fe_3O_4/SiO_2$ nanoparticles synthesized by sol-gel method exhibit the high uniformities of particle size and shape. We also investigated the heating characteristics of $Fe_3O_4$ and $Fe_3O_4/SiO_2$ nanoparticles for biomedical applications. The $Fe_3O_4$ nanoparticles show the faster temperature increase and the higher specific loss power(SLP) value than the $Fe_3O_4/SiO_2$ nanoparticles.

  • PDF

Synthesis and Characterization of the Mixed-valence $[Fe^{II}Fe^{III}BPLNP(OAc)_2](BPh_4)_2$ Complex As a Model for the Reduced Form of the Purple Acid Phosphatase

  • Lee, Jae Seung;Jung, Dong J.;Lee, Ho Jin;Lee, Gang Bong;Heo, Nam Hoe;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.969-972
    • /
    • 2000
  • [Fe II Fe III $BPLNP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)ami-no)methyl]-4-nitrophenol (HBPLNP) . Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electrochemical methods. Complex 1 exhibits two strong bands at 498 nm $(\varepsilon=$ 2.6 ${\times}10^3M-^1cm-^1)$ and 1363 nm $(\varepsilon=$ 5.7 ${\times}10^2M-^1cm-^1)$ in $CH_3CN.$ These are assigned to phenolate-to-FeIII and intervalence charge-transfer transitions, respectively. NMR spectrum of complex 1 exhibits sharp isotropically shifted resonances, which number is half of those expected for a valence-trapped species, indicating that electron transfer between FeⅡ and FeⅢ centers is faster than NMR time scale at room temperature. Complex 1 undergoes quasireversible one-electron redox processes. The $FeIII_2/FeIIFeIII$ and $FeIIFeIII/FeII_2$ redox couples are at 0.807 and 0.167 V ver-sus SCE, respectively. It has Kcomp = 5.9 ${\times}$10 1s(acetato) ligand combination sta-bilizes a mixed-valence FeIIFeIII complex in the air. Interestingly, complex 1 exhibits intense EPR signals at g = 8.56, 5.45, 4.30 corresponding to mononuclear high-spin FeⅢ species, which suggest a very weak magnetic coupling between the iron centers. Magnetic susceptibility study shows that there is a very weak antiferromag-netic coupling (J = $-0.78cm-^1$, H = $-2JS_1${\times}$S_2)$ between FeII and FeIII centers. Thus, we can suggest that complex 1 has a very weak antiferromagnetic coupling between the iron centers due to the electronic effect of the nitro group in the bridging phenolate ligand.