• Title/Summary/Keyword: $D_2O$

Search Result 7,681, Processing Time 0.033 seconds

Comparision of the Pressure Denaturation of Metmyoglobin in $H_2O$ and $D_2O$ ($H_2O$$D_2O$ 에서 메트미오글로빈의 압력에 의한 변성의 비교 연구)

  • Keon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.14-19
    • /
    • 1984
  • The stability difference of metmyoglobin in $H_2O$ and $D_2O$ at pH 5.7 and pH 7.0 toward pressure denaturation is studied. Metmyoglobin is denatured in $D_2O$ at smaller pressure than in $H_2O$. The stability difference in $H_2O$ and $D_2O$ is more pronounced at pH 5.7 than at pH 7. The main reasons for the stability difference in $H_2O$ and $D_2O$are the difference in positive charge due to $H^+$and $D^+$ binding to the protein in $H_2O$ and $D_2O$, and the structural change that accompany deuteration.

  • PDF

A Study on the Constituents from the Roots of Polygala tenuifolia (원지(Polygala tenuifolia WILLD.) 뿌리의 성분연구)

  • Lee, Young-Sun;Lee, Je-Hyun;Kim, Chung-Sook;Kim, Jin-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • Five compounds were isolated from the roots of Polygala tenuifolia (Polygalaceae). On the basis of spectroscopic evidences, the structures of these compounds were characterized as ${\alpha}-D-(6-O-sinapoyl)-glucopyranosyl(1{\rightarrow}2')-{\beta}-D-(3'-O-sinapoyl)-fructofuranoside$ (P3), ${\alpha}$-D-{6-O-(p-methoxybenzoyl)}-glucopyranosyl-$(1{\rightarrow}2')$-${\beta}$-D-{3'-O-(3',4',5'-trimethoxycinnamoyl)}-fructofuranoside(P4), ${\alpha}$-D-{6-O-(p-hydroxybenzoyl)}-glucopyranosyl-$(1{\rightarrow}2')$-${\beta}$-D-{3'-O-(3',4',5'-trimethoxycinnamoyl)}-fructofuranoside(P5), ${\alpha}-D-glucopyranosyl-(1{\rightarrow}2')-{\beta}-D-(1'-O-sinapoyl)-fructofuranoside$(P6), $1,5-anhydro-D-glucitol$(P7) respectively. ${\alpha}$-D-{6-O-(p-Methoxybenzoyl)}-glucopyranosyl-$(1{\rightarrow}2')$-${\beta}$-D-{3'-O-(3',4',5'-trimethoxycinnamoyl)}-fructofuranoside(P4) and ${\alpha}-D-glucopyranosyl-(1{\rightarrow}2')-{\beta}-D-(1'-O-sinapoyl)-fructofuranoside$(P6) were isolated for the first time from the genus of Polygala. 1,5-Anhydro-D-glucitol(P7) was isolated without hydrolysis for the first time from the root of Polygala tenuifolia.

  • PDF

The Efficient Synthesis of 6-O-(2-Acetamido-2-deoxy-${\beta}$)-D-glucopyranosyl)-D-galactopyranose and Its Derivatives (6-O-(2-Acetamido-2-deoxy-${\beta}$-D-glucopyranosyl)-D-galactopyranose 및 유도체의 합성)

  • Chung Bong Young;Sim Young Key
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.46-51
    • /
    • 1979
  • Condensation of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-${\beta}$-D-glucopyranosyl bromide (2) with 1,2;3,4-di-O-isopropylidene-${\alpha}$-D-galactopyranose (3) in the presence of silver triflate and syn-collidine gave 1,2;3,4-di-O-isopropylidene-6-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-${\beta}$-D-glucopyranosyl)-${\alpha}$-D-galactopyranose (4) in $86{\%}$ yield. Cleavage of phthalimido group and de-O-acetylation with hydrazine, acetylation, and hydrolysis of isopropylidene and O-acetyl groups furnished 6-O-(2-acetamido-2-deoxy-${\beta}$-D-glucopyranosyl)-D-galactopyranose (1) with overall yield of $65.8{\%}$ starting from 3. Some other derivatives of 1 which have free hydroxyl groups at the specific position have also been prepared from 4. These compounds could be used as precursors for further glycosidation reactions.

  • PDF

Terahertz Characteristics of D2O and H2O Mixtures (테라헤르츠 분광학을 이용한 중수(D2O)와 경수(H2O) 혼합물의 특성연구)

  • Chong, Joong-Gun;Son, Joo-Hiuk
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.435-438
    • /
    • 2008
  • D2O, which is used in nuclear power generation, is slightly different from $H_2O$. $D_2O$ consists of deuterium (D), which is an isotope of hydrogen (H) and has one more neutron than H. $D_2O$ is heavier by about 11% than $H_2O$, and $D_2O$ is present in water in natureat about 0.002%. Its melting point and boiling point are $3.81^{\circ}C$ and $101.42^{\circ}C$, respectively. $D_2O$ is harmful to the human body if it replaces water in the human body by more than $25%{\sim}50%$. We have measured the index of refractive and power absorption of 0%, 25%, 50%, 75%, and 100% of $D_2O$ in $H_2O$ using terahertz time-domain spectroscopy, and we have found that the refractive index decreases and power absorption also decreases as the concentration of $D_2O$ increases.

Content Analysis and Classification for Polygonati Odorati Rhizoma and Polygonati Rhizoma by Steroidal Saponin (Steroidal Saponin을 이용한 위유, 황정의 분류 및 함량 분석법 개발)

  • Kim, Sun-Gun;Shin, So-Young;Moon, Ye-Ji;Seo, Ji-Yoon;Kim, Ho-Kyoung;Whang, Wan-Kyunn
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.441-448
    • /
    • 2010
  • In present study, classification and quality control of Genus Polygonatum were developed using the isolated from Polygonati Odorati Rhizoma and Polygonati Rhizoma. 3 components were isolated from Butanol fractions of Polygonati Rhizoma, and 2 components were isolated from Hexane and Butanol fractions of Polygonati Odorati Rhizoma. All the components were obtained using silica gel and ODS column chromatography. The compounds were identified as adenosine, 14-hydroxylfurost-5-ene-3-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}2$)-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}4$)-O-${\beta}$-D-galactopyranosyl-26-O-${\beta}$-D-glucopyranoside, 22-O-methyl-14-hydrocxyfurost-5-ene-3-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}2$)-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}4$)-O-${\beta}$-Dgalactopyranosyl-26-O-${\beta}$-D-glucopyranoside, ${\beta}$-Sitosteryl-3-O-${\beta}$-D-D-glucopyranoside, 14-hydoxylfurost-5-ene-3-O-${\beta}$-Dglucopyranosyl-($1{\rightarrow}2$)-O-[${\beta}$-D-xylopyranosyl-($1{\rightarrow}3$)]-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}4$)-O-${\beta}$-D-galactopyranoside through physicochemical data, spectroscopic methods ($^1H$-NMR, $^{13}C$-NMR, Mass) according references. The quality control of genus Polygonatum were conducted using HPLC quantitative analysis of 14-hydroxylfurost-5-ene-3-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}2$)-O-${\beta}$-D-glucopyranosyl-($1{\beta}4$)-O-${\beta}$-D-galactopyranosyl-26-O-${\beta}$-D-glucopyranoside, 14-hydoxylfurost-5-ene-3-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}2$)-O-[${\beta}$-D-xylopyranosyl-($1{\rightarrow}3$)]-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}4$)-O-${\beta}$-D-galactopyranoside in 30 samples collected throughout Korea and China. This method provided a tool for standardization of mix or misusing the commercial Odorati Rhizoma and Polygonati Rhizoma. As a result, contained quantity of 14-hydroxylfurost-5-ene-3-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}2$)-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}4$)-O-${\beta}$-D-galactopyranosyl-26-O-${\beta}$-D-glucopyranoside was measured $0.008{\pm}0.006%$ and 14-hydoxylfurost-5-ene-3-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}2$)-O-[${\beta}$-D-xylopyranosyl-(13)]-O-${\beta}$-D-glucopyranosyl-($1{\rightarrow}4$)-O-${\beta}$-Dgalactopyranoside was measured $0.026{\pm}0.012%$.

The Reaction of Superoxide with Carbohydrate Sulphonates

  • Shin, Young-Sook;Nam Shin, Jeong E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.188-191
    • /
    • 1993
  • The reaction between methyl 2,3-di-O-benzyl-4,6-di-O-mesyl-${\alpha}$-D-glucopyranoside (1b) and potassium superoxide resulted in hydrolysis, and gave methyl 2,3-di-O-benzyl-${\alpha}$-D-glucopyranoside (1) as a sole product. When the reaction was performed with a vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-altropyranoside (4b), again the hydrolysis product, methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4) was obtained. However, the reaction of potassium superoxide with another vicinal dimesylate, methyl 4,6-O-benzylidene-2,3-di-O-mesyl-${\alpha}$-D-glucopyranoside (3b), nucleophilic displacement took place to afford methyl 4,6-O-benzylidene-${\alpha}$-D-altropyranoside (4). Apparently different results from two trans vicinal dimesylates, 3b and 4b are explained by the transient formation of epoxides, methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-allopyranoside (8) and methyl 2,3-anhydro-4,6-O-benzylidene-${\alpha}$-D-mannopyranoside (9) by $KO_2$. The reaction between the allo epoxide 8 and $KO_2$ gave altro 4. The manno epoxide 9 also afforded altro 4 as the major product. Facile epoxide formation by the reaction of a vicinal dimesylate and superoxide was also observed with 3-O-benzyl-1,2-O-isopropylidene-5,6-di-O-mesyl-${\alpha}$-D-glucofuranose: 5,6-anhydro-3-O-benzyl-1,2-O-isopropylidene-${\beta}$-L-idofuranose was obtained.

New Flavonol Glycosides from Leaves of Symplocarpus renifolius

  • Whang, Wan-Kyunn;Lee, Moo-Taek
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.423-427
    • /
    • 1999
  • A study was carried out to evaluate flavonol glycosides in leaves of Symplocarpus renifolius (Araceae). From the water fraction of the MeOH extract, three new flavonol glycosides were isolated along with three known compounds, Kaempferol-3-O-$\beta$-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranoside, quercetin-3-O-$\beta$-D-glucopyranosy-1-($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, and caffeic acid. The structures of the new flavonol glycosides were elucidated by chemical and spectral analyses a quercetin-3-O-$\beta$-D-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranoside, isorhamnetin-3-O-$\beta$-D-glucopyranosyl-(1 2)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranosdie, and quercetin-3-O$\beta$-D-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glycopyranosyl-7-O-($6^{IIII}$-trans-caffeoyl)-$\beta$-D-glucopyranoside.

  • PDF

Triterpenoid Saponins from Vaccaria segetalis

  • Sang, Shengmin;Lao, Aina;Wang, Hongcheng;Chen, Zhongliang;Uzawa, Jun;Fujimoto, Yasuo
    • Natural Product Sciences
    • /
    • v.4 no.4
    • /
    • pp.268-273
    • /
    • 1998
  • Two new triterpenoid saponins, named segetoside D and E, have been isolated from the seeds of Vaccaria segetalis. On the basis of chemical reactions and spectral data, structures of segetoside D and E have been established as: $28-O-[{\beta}-D-xylopyranosyl-(1{\rightarrow}4)-{\alpha}-L-rhamnopyranosyl-(1{\rightarrow}2)]-[5-O-acetyl-{\alpha}-arabinofuranosyl(1{\rightarrow}3)]-[4-O-acetyl-{\beta}-D-fucopyranosyl]-quillaic\;acid-3-O-[{\beta}-D-galactopyranosyl(1{\rightarrow}2)]6-O-methyl\;ester-{\beta}-D-glucuronopyranoside$ and $28-O-[{\beta}-D-xylopyranosyl-(1{\rightarrow}4)-{\alpha}-L-rhamnopyranosyl-(1{\rightarrow}2)]-[5-O-acetyl-{\alpha}-arabinofuranosyl(1{\rightarrow}3)]-[4-O-acetyl-{\beta}-D-fucopyranosyl]-quillaic\;acid\;-3-O-[{\beta}-D-galactopyranosyl(1{\rightarrow}2)]-6-O-n-butyl\;ester-{\beta}-D-glucuronopyranoside$, respectively.

  • PDF

Optoelectric properties of hybrid materials with Ag-nanowire and 2-dimensional structured RuO2 (은나노와이어와 2차원 구조 루테늄산화물 하이브리드 재료의 광전기적 특성)

  • Jeong Min Lee;Hee Jung Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.55-60
    • /
    • 2024
  • Two-dimensional (2D) RuO2 nanosheets with nanometer thickness were synthesized using a chemical exfoliation method. The synthesized 2D-RuO2 was hybridized with Ag-nanowire (NW), which is attracting attention as a next-generation transparent electrode material. After coating Ag-NW on the substrate, 2D-RuO2 was subsequently coated on the Ag-NW. Although there was a decrease in optical transmittance, the hybridization of 2D-RuO2 confirmed the effect of reducing sheet resistance. Furthermore, the flexibility of the fabricated transparent electrodes was also studied. It was confirmed by the change in sheet resistance after bending. The additional coating of 2D-RuO2 improved the flexibility of the transparent electrodes.

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.