DOI QR코드

DOI QR Code

Terahertz Characteristics of D2O and H2O Mixtures

테라헤르츠 분광학을 이용한 중수(D2O)와 경수(H2O) 혼합물의 특성연구

  • 정중건 (서울시립대학교 물리학과) ;
  • 손주혁 (서울시립대학교 물리학과)
  • Published : 2008.12.31

Abstract

D2O, which is used in nuclear power generation, is slightly different from $H_2O$. $D_2O$ consists of deuterium (D), which is an isotope of hydrogen (H) and has one more neutron than H. $D_2O$ is heavier by about 11% than $H_2O$, and $D_2O$ is present in water in natureat about 0.002%. Its melting point and boiling point are $3.81^{\circ}C$ and $101.42^{\circ}C$, respectively. $D_2O$ is harmful to the human body if it replaces water in the human body by more than $25%{\sim}50%$. We have measured the index of refractive and power absorption of 0%, 25%, 50%, 75%, and 100% of $D_2O$ in $H_2O$ using terahertz time-domain spectroscopy, and we have found that the refractive index decreases and power absorption also decreases as the concentration of $D_2O$ increases.

중수($D_2O$, 산화중수소)는 수소원자(H)보다 중성자 한 개가 더 많은 수소원자 동위원소(D)로 이루어진 물이다. 중수는 자연 상태의 물 가운데 5만분의 1정도 존재하며 경수($H_2O$)와 매우 비슷한 성질을 가지고 있으나 경수보다 11%정도 무겁고, 특이점은 235 K로 228 K인 경수와 약간의 차이를 가진다. 중수는 중성자를 흡수하여 원자로의 중성자 감속재로 쓰이고 최근 중수 농도에 따라 세포에 미치는 독성효과가 다르게 나타나는 현상이 발견 되어 암 치료에 사용하려는 연구가 진행되고 있다. 우리는 테라헤르츠 시간축 분광학을 이용하여 경수와 중수 혼합물의 농도별 굴절률과 흡수율 변화를 거대 분자간 결합에너지 영역을 포함하는 테라헤르츠 영역 ($0{\sim}2.5\;THz$)에서 측정하여 중수의 비율이 높을수록 굴절률은 감소하고 흡수율 또한 감소하는 결과를 얻었다.

Keywords

References

  1. C. Ronne, P. O. Astrand, and S. R. Keiding, “Thz Spectroscopy of Liqud $H_2O$ and $D_2O$,” Phys. Rev. Lett., vol. 82, no. 12, pp. 2888-2891, 1999 https://doi.org/10.1103/PhysRevLett.82.2888
  2. G. S. Kell, “Precise Representation of Volume Properties of Water at One Atmosphere,” J. Chem. Eng. Data, vol. 12, no. 1, pp. 66-69, Jan. 1967 https://doi.org/10.1021/je60032a018
  3. S. Vasdev, C. A. Sampson, A. Liepins, and J. Hypertens, “Effects of Deuterium Oxide ($D_2O$) on the Development of Hypertension and $Ca^{2+}$ Homeostasis in Spontaneously Hypertensive Rats,” J. Hypertens., vol. 8, no. 2, pp. 185-189, Feb. 1990 https://doi.org/10.1097/00004872-199002000-00014
  4. A. Hodel, J. O. Gebbers, H. Cottier, and J. A. Laissue, “Effects of Prolonged Moderate Body Deuteration on Proliferative Activity in Major Cell Renewal Systems in Mice,” Life Sci., vol. 30, no. 23, pp. 1987-1996, 1982 https://doi.org/10.1016/0024-3205(82)90438-6
  5. D. J. Kushner, A. Baker, and T. G. Dunstall, “Pharmacological Uses and Perspectives of Heavy Water and Deuterated Compounds,” Can. J. Physiol. Pharmacol., vol. 77, no. 2, pp. 79-88, 1999 https://doi.org/10.1139/cjpp-77-2-79
  6. S. J. Oh, C. Kang, I. Maeng, and J-H. Son, “Measurement of carrier concentration captured by InAs/GaAs quantum dots using terahertz time-domain spectroscopy,” Appl. Phys. Lett., vol. 90, no. 13, pp. 131906-1-131906-3, 2007 https://doi.org/10.1063/1.2716859
  7. U. W. Kim, S. J. Oh, I. Maeng, C. Kang, and J. H. Son, “Terahertz electrical characteristics of heavily doped n-GaAs thin films,” J. Korean Phys. Soc., vol. 50, no. 3, pp. 789-792, 2007 https://doi.org/10.3938/jkps.50.789
  8. H. Takeda, Y. Nio, H. Omori, K. Uegaki, N. Hirahara, S. Sakaki, K. Tamura, and H. Ohtani, “Mechanisms of Cytotoxic Effects of Heavy Water (Deuterium Oxide: $D_2O$) on Cancer Cells,” Anticancer Drugs, vol. 9, no. 8, pp. 715-725, Sep. 1998 https://doi.org/10.1097/00001813-199809000-00007
  9. T. Uemura, K. Moritake, Y. Akiyama, Y. Kimura, T. Shingu, and T. Yamasaki, “Experimental validation of deuterium oxide-mediated antitumoral activity as it relates to apoptosis in murine malignant astrocytoma cells,” J. Neurosurg., vol. 96, no. 5, pp. 900-908, 2002 https://doi.org/10.3171/jns.2002.96.5.0900