• Title/Summary/Keyword: $CuInS_{2}$

Search Result 2,269, Processing Time 0.028 seconds

Microfluidic System for the Measurement of Cupric Ion Concentration using Bilayer Lipid Membrane on Silver Surface (은 표면의 이중층 지질막에 의한 구리 이온 농도 측정용 마이크로플루이딕 시스템)

  • Jeong, Beum Seung;Kim, Do Hyun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • A microfluidic system has been developed using biomaterial for the measurement of cupric ion concentration. The cell-membrane-mimicking bilayer lipid membrane(BLM)-coated silver electrode was used for the sensing of cupric ion concentration. The silver-supported BLM could increase its stability. A silver-supported bilayer lipid membrane(s-BLM) was easily obtained using its self-assembling characteristics by immersing silver wire into lipid(phosphatidylcholine; PC) solution and then dipping into aqueous KCl solution. These s-BLMs were used to determine the relationship between $Cu^{2+}$ concentration and current crossing s-BLM. Their relationship showed high linearity and reproducibility. The calibration curve was constructed to express the relationship between $Cu^{2+}$ concentration and current in the $Cu^{2+}$ concentration range of 10 and $130{\mu}M$. This calibration curve was used to measure $Cu^{2+}$ concentration in an unknown sample. Microfluidic system with s-BLM was made of PDMS(polydimethyl siloxane) using typical soft photolithography and molding technique. This integrated system has various functions such as activation of the silver surface without cutting silver wire, coating of BLM on silver surface, injection of KCl buffer solution, injection of $Cu^{2+}$ sample and measurement of $Cu^{2+}$ concentration in the sample.

High-Speed Shear Test Characterization of Sn-Ag-Cu-In Quaternary Solder Joint (Sn-Ag-Cu-In 4원계 무연솔더 조인트의 고속 전단 특성)

  • Kim, Ju-Hyung;Hyun, Chang-Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • With Pb-free solder joints containing Sn-Ag-Cu-based ternary alloys (Sn-1.0 wt.%Ag-0.5Cu and Sn-4.0Ag-0.5Cu) and Sn-Ag-Cu-In-based quaternary alloys (Sn-1.0Ag-0.5Cu-1.0In, Sn-1.2Ag-0.5Cu-0.4In, Sn-1.2Ag-0.5Cu-0.6In, and Sn-1.2Ag-0.7Cu-0.4In), fracture-mode change, shear strengths, and fracture energies were observed and measured under a high-speed shear test of 500 mm/s. The samples in each composition were prepared with as-reflowed ones or solid-aged ones at $125^{\circ}C$ to 500 h. As a result, it was observed that ductile or quasi-ductile fracture modes occurs in the most of Sn-Ag-Cu-In samples. The happening frequency of a quasi-ductile fracture mode showed that the Sn-Ag-Cu-In joints possessed ductile fracture properties more than that of Sn-3.0Ag-0.5Cu in the high-speed shear condition. Moreover, the Sn-Ag-Cu-In joints presented averagely fracture energies similar to those of Sn-Ag-Cu joints. While maximum values in the fracture energies were measured after the solid aging for 100 h, clear decreases in the fracture energies were observed after the solid aging for 500 h. This result indicated that reliability degradation of the Sn-Ag-Cu-In solder joints might accelerate from about that time.

Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst

  • An, HyeLan;Kang, Leeseung;Ahn, Hyo-Jin;Choa, Yong-Ho;Lee, Chan Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.267-274
    • /
    • 2018
  • $TiO_2/CuS$ nanocomposites were fabricated by precipitation of nanosized CuS via sonochemical method on electrospun $TiO_2$ nanofibers, and their structure, chemical bonding states, optical properties, and photocatalytic activity were investigated. In the $TiO_2/CuS$ nanocomposite, the position of the conduction band for CuS was at a more negative than that of TiO; meanwhile, the position of the valence band for CuS was more positive than those for TiO, indicating a heterojunction structure belonging to type-II band alignment. Photocatalytic activity, measured by decomposition of methylene blue under visible-light irradiation (${\lambda}$ > 400 nm) for the $TiO_2/CuS$ nanocomposite, showed a value of 85.94% at 653 nm, which represented an improvement of 52% compared to that for single $TiO_2$ nanofiber (44.97% at 653 nm). Consequently, the photocatalyst with $TiO_2/CuS$ nanocomposite had excellent photocatalytic activity for methylene blue under visible-light irradiation, which could be explained by the formation of a heterojunction structure and improvement of the surface reaction by increase in surface area.

LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy (Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2007
  • The strain fields due to precipitates, especially S-phase $(Al_2CuMg)$ particles in Al-2.5Cu-1.5Mg wt.% alloy were first investigated with Large Angle Convergent Beam Electron Diffraction (LACBED) method. The work involves LACBED pattern simulations to estimate possibly the strength of the strain fields. To do this the morphology of S-particle was optimized as a cylindrical shape with $a_s$ axis, and the displacement vector of strain fields was assumed to be perpendicular to $a_s$ axis. With this simple model the reasonable fittings between the observed patterns of the strain fields and simulations were obtained. And in the early aging stage of the alloy the significant strain fields were not observed. As a result of this study it is expected that the strain fields due to S-phase precipitates in the stage with maximum hardness would make a complex networks to possibly contribute to hardiness of the alloy.

Detection of H2S Gas with CuO Nanowire Sensor (산화구리 나노선 센서의 황화수소 감지특성)

  • Lee, Dongsuk;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.238-246
    • /
    • 2015
  • $H_2S$ is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to $800^{\circ}C$. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The $H_2S$ gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at $800^{\circ}C$ showed the highest response at the lowest operating temperature of $150^{\circ}C$. The optimum operating temperature was shifted to higher temperature to $300^{\circ}C$ as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.

A STUDY ON COPPER DEPOSITION PROCESS DURING ANODIC OXIDATION OF ALUMINIUM ALLOY

  • Koh, I.S.;Han, S.H.;Shin, D.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.444-446
    • /
    • 1999
  • The structure and composition of anodic films, formed on 6063 commercial aluminium alloy at constant current density of $1.5A/^dm2$ with various superimposed cathodic current ratio, in the range 0~33%, in the 11% $H_2SO_4$ with various concentration of $CuSO_4{\cdot}5H_2O$, in the range 0~75 g/l, without cathodic current are generally porous-type and no sign of Cu co-deposition appearance, suggesting that cathodic current is an important factor in the Cu co-deposition. Comparison with the anodic film thickness measurement results obtained from anodic film formed by direct anodic current and anodic film formed by superimposed various portion of cathodic current, the portion of cathodic current of input current increases with decrease of anodic film thickness and increases with increase of concentration of $Cu_2S{\;}and{\;}Cu_2O$ in the anodic film.

  • PDF

A Study on the Influence of Substituting Cu Eine Particle for CuO on NiCuZn Ferrite (CuO 대신 Cu 미분말 치환이 NiCuZn Ferrite에 미치는 영향에 관한 연구)

  • Kim, Jae-Sik;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • Diffusion speed of Cu metal fine particle is fast better than CuO, so it will promote grain growth in sintering. In this paper, the influence on substituting Cu fine particle for CuO of NiCuZn ferrite with basic composition (N $i_{0.204}$C $u_{0.204}$Z $n_{0.612}$ $O_{1.02}$)F $e_{1.98}$ $O_{2.98}$ has been investigated with varying Cu/CuO ratio. The perfect spinel structure of sintered specimen at 90$0^{\circ}C$ was confirmed by the analysis of XRD patterns. The best condition was obtained when the ratio of Cu/CuO was 60%, and the permeability was 1100 and Ms was 87 emu/g in this condition. Cu has influenced on grain growth in sintering, substituting Cu fine particle for CuO could lower sintering temperature over the 3$0^{\circ}C$. After sintering, substituting Cu performed as good as CuO.s CuO.s CuO.

The Application for Electrophotographic Photoreceptors of Zinc Oxide Adsorbed Copper Phthalocyanine and Sunfast Yellow (색소 흡착 산화아연 감광체의 전자사진 특성에 관한 연구)

  • Heo, Sun Ok;Kim, Young Soon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.632-639
    • /
    • 1994
  • For dye sensitization of zinc oxide in the visible region, copper phthalocyanine(CuPc) and sunfast yellow(SY) were adsorbed in two layers on zinc oxide powder. The adsorption structures of $\alpha-and\beta-CuPc$ on zinc oxide were investigated by photoacoustic, IR and Raman spectra. The ${\alpha}-and\;{\beta}$-polymorphs exhibited dimeric structure or molecular aggregates. The surface photovoltaic effect of ZnO/CuPc/SY showed higher than that of ZnO/SY/CuPc and $ZnO/\beta-CuPc/SY$ indicated better photosensitive than $ZnO/\alpha-CuPc/SY.$ Electrophotographic sensitivity of $ZnO/\beta-CuPc/SY$ was $$S_{1/2}=2.99{\times}10^{-2}(erg/cm^2)^{-1}$ at 630 nm.

  • PDF

Chemical reaction at Cu/polyimide interface (Cu/polyimide 계면에서의 화학반응)

  • 이연승
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.494-503
    • /
    • 1997
  • We investigated the initial stages of formation of the Cu/polyimide interface using another two methods by X-ray photoelectron spectroscopy. : One, in-situ measurement with increasing of Cu deposition thickness onto polyimide(PI), the other, measurement with decreasing of Cu thickness of Cu/pI film by $Ar^+$ ion etching. From these results, we find that the chemical reactions exist in Cu/PI interface. However, the measured chemical reactions were different according to experimental method.

  • PDF

Study on the Cu/Polyimide interface using XPS: Initial growth of Cu sputter-deposited on the polyimide at high temperature (II) (XPS를 이용한 Cu/Polyimide의 계면에 관한 연구: 고온에서 증착한 Cu의 초기성장과 정(II))

  • 이연승;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • We investigated the initial growth mode of Cu deposited on polyimide at high temperature($350^{\circ}C$) using x-ray photoelectron spectroscopy. We could find that when Cu is sputter-deposited on the polyimide at high temperature, Cu-C-N complex is formed first, Cu-N-O complex and Cu-oxide are mainly formed successively, and then funally metallic Cu grows. In the chemical reaction point of view, the interface of Cu/polyimide at high temperature is than that at room temperature.

  • PDF