DOI QR코드

DOI QR Code

Detection of H2S Gas with CuO Nanowire Sensor

산화구리 나노선 센서의 황화수소 감지특성

  • Lee, Dongsuk (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • 이동석 (충남대학교 공과대학 신소재공학과) ;
  • 김도진 (충남대학교 공과대학 신소재공학과) ;
  • 김효진 (충남대학교 공과대학 신소재공학과)
  • Received : 2015.04.02
  • Accepted : 2015.05.07
  • Published : 2015.05.27

Abstract

$H_2S$ is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to $800^{\circ}C$. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The $H_2S$ gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at $800^{\circ}C$ showed the highest response at the lowest operating temperature of $150^{\circ}C$. The optimum operating temperature was shifted to higher temperature to $300^{\circ}C$ as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.

Keywords

References

  1. R. J. Reiffenstein, W. C. Hulbert and S. H. Roth, Annu. Rev. Pharmacol. Toxicol., 32(1), 109 (1992). https://doi.org/10.1146/annurev.pa.32.040192.000545
  2. P. Patnaik, A comprehensive guide to the hazardous properties of chemical substances, 3th ed., p.407, John Wiley & Sons., Wiley, USA (2007).
  3. P. J. Baxter, T. C. Aw, A. Cockcroft, P. Durrington and J. M. Harrington, Hunter's diseases of occupations, 10th ed., p.292, CRC Press., CRC, USA (2010).
  4. H. Liu, S. P. Gong, Y. X. Hu, J. Q. Liu and D. X. Zhou, Sens. Actuators, B, 140(1), 190 (2009). https://doi.org/10.1016/j.snb.2009.04.027
  5. H. Liu, S. Gong, Y. Hu, J. Zhao, J. Liu, Z. Zheng and D. Zhou, Chem. Int., 35(3), 961 (2009).
  6. N. Zhang, K. Yu, Q. Li, Z. Q. Zhu and Q. Wan, Jpn. J. Appl. Phys., 103(10), 104305 (2008). https://doi.org/10.1063/1.2924430
  7. J. Kim and K. Yong, J. Phys. Chem. C, 115(15), 7218 (2011). https://doi.org/10.1021/jp110129f
  8. C. S. Rout, M. Hegde and C. N. R. Rao, Sens. Actuators, B, 128(2), 488 (2008). https://doi.org/10.1016/j.snb.2007.07.013
  9. L. F. Reyes, A. Hoel, S. Saukko, P. Heszler, V. Lantto and C. G. Granqvist, Sens. Actuators, B, 117(1), 128 (2006). https://doi.org/10.1016/j.snb.2005.11.008
  10. R. Ionescu, A. Hoel, C. G. Granqvist, E. Llobet and P. Heszler, Sens. Actuators, B, 104(1), 132 (2005). https://doi.org/10.1016/j.snb.2004.05.015
  11. V. D. Kapse, S. A. Ghosh, G. N. Chaudhari and F. C. Raghuwanshi, Talanta, 76(3), 610 (2008). https://doi.org/10.1016/j.talanta.2008.03.050
  12. M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A. K. Tyagi, S. K. Gupta. and J. V. Yakhmi, Sens. Actuators, B, 133(2), 456 (2008). https://doi.org/10.1016/j.snb.2008.03.003
  13. R. H. Bari, S. B. Patil and A. R. Bari, Int. Nano Lett., 3(1), 1 (2013). https://doi.org/10.1186/2228-5326-3-1
  14. P. Vikas, J. Datta, P. Shailesh, C. Manik, G. Prsad, P. Sanjay, R. Bhara and S. Shashwati, J. Sens. Technol., 1(2), 36 (2011). https://doi.org/10.4236/jst.2011.12006
  15. F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. Yang and Y. Qin, J. Phys. Chem. C, 114(45), 19214 (2010). https://doi.org/10.1021/jp106098z
  16. Y. Shen, M. Guo, X. Xia and G. Shao, Acta Mater., 85, 122 (2015). https://doi.org/10.1016/j.actamat.2014.11.018
  17. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li and T. Yu, Nanotechnology, 20(8), 085203 (2009). https://doi.org/10.1088/0957-4484/20/8/085203
  18. X. K. Chen, J. C. Irwin and J. P. Franck, Phys. Rev. B: Condens. Mater Mater. Phys., 52(18), R13130 (1995). https://doi.org/10.1103/PhysRevB.52.R13130
  19. J. F. Xu, W. Ji, Z. X. Shen, W. S. Li, S. H. Tang, X. R. Ye, D. Z. Jia and X. Q. Xin, J. Raman Spectrosc., 30(5), 413 (1999). https://doi.org/10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N
  20. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin and Q. J. Chen, Phys. D: Appl. Phys., 33(8), 912 (2000). https://doi.org/10.1088/0022-3727/33/8/305
  21. N. D. Hoa, N. Van Quy, Y. Cho and D. Kim, Sens. Actuators, B, 135(2), 656 (2009). https://doi.org/10.1016/j.snb.2008.10.041
  22. S. Han, H. Y. Chen, Y. B. Chu and H. C. Shih, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 23(6), 2557 (2005). https://doi.org/10.1116/1.2126672
  23. J. Park, K. Lim, R. D. Ramsier and Y. C. Kang, Bull. Korean Chem. Soc., 32(9), 3395 (2011). https://doi.org/10.5012/bkcs.2011.32.9.3395
  24. E. Comini, G. Faglia and G. Sberveglieri, Solid State Gas Sensing., p.64., Springer, New York (2009).
  25. N. D. Hoa, N. Van Quy, H. Jung, D. Kim, H. Kim and S. K. Hong, Sens. Actuators, B, 146(1), 266 (2010). https://doi.org/10.1016/j.snb.2010.02.058
  26. S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati and A. Kock, Sens. Actuators, B, 186, 550 (2013). https://doi.org/10.1016/j.snb.2013.06.044
  27. X. Xue, L. Xing, Y. Chen, S. Shi, Y. Wang and T. Wang, J. Phys. Chem. C, 112(32), 12157 (2008). https://doi.org/10.1021/jp8037818
  28. X. Kong and Y. Li, Sens. Actuators, B, 105(2), 449 (2005). https://doi.org/10.1016/j.snb.2004.07.001
  29. X. Zhou, Q. Cao, H. Huang, P. Yang and Y. Hu, Mater. Sci. Eng. B, 99(1), 44 (2003). https://doi.org/10.1016/S0921-5107(02)00501-9

Cited by

  1. Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature vol.26, pp.6, 2016, https://doi.org/10.3740/MRSK.2016.26.6.342
  2. Formation of Copper Oxide Nanowires by Thermal Oxidation of Copper Foil vol.13, pp.2, 2017, https://doi.org/10.7849/ksnre.2017.6.13.2.078