• 제목/요약/키워드: $CuGaS_2$

검색결과 199건 처리시간 0.029초

대면적 CIGS 광흡수층 증착을 위한 선형증발원 개발 (Linear Source for Evaporating Large Area CIGS Absorber Layer)

  • 서제형;정승욱;이원선;최윤성;최명운;최진철;최광호
    • 한국진공학회지
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2013
  • $600{\times}1,200mm$ 기판에 대면적 CIGS 광흡수층 증착을 위한 선형증발원 개발을 위해 다른 크기의 노즐과 일정한 노즐 간격을 가지는 선형증발원의 플럭스 밀도를 전산 모사하여 플럭스 균일도 ${\pm}5%$의 조건을 구하였다. 이를 바탕으로 제작된 선형증발원을 이용하여 Cu, In의 단일막 두께균일도를 확인하였고, CIGS 광흡수층을 동시증발법으로 증착하여 박막의 두께균일도 및 증착 조성의 균일도로 선형증발원을 평가하였다. XRF 조성 분석을 통해 구한 조성불균일도는 600 mm 폭에서 $$Cu{\leq_-}5%$$, $$In{\leq_-}7%$$, $$Ga{\leq_-}4%$$, $$Se{\leq_-}3%$$으로 균일한 조성비로 성막된 것을 확인하였고 SEM 분석을 통해 표면 결정립의 형상을 확인하였다. 또한 XRD측정을 통해 선형증발원 방향의 대면적 CIGS 광흡수층이 칼코피라이트 구조임을 확인하였다. 이를 통해서 개발된 하향 선형증발원이 CIGS 광흡수층 증착에 적합함을 확인하였다.

성장온도에 따른 Cu(In1Ga)Se2박막 태양전지의 광전특성 분석 (Photovoltaic Properties of Cu(In1Ga)Se2Thin film Solar Cells Depending on Growth Temperature)

  • 김석기;이정철;강기환;윤경훈;송진수;박이준;한상옥
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.102-107
    • /
    • 2003
  • This study puts focus on the optimization of growth temperature of CIGS absorber layer which affects severely the performance of solar cells. The CIGS absorber layers were prepared by three-stage co-evaporation of metal elements in the order of In-Ga-Se. The effect of the growth temperature of 1st stage was found not to be so important, and 350$^{\circ}C$ to be the lowest optimum temperature. In the case of growth temperature at 2nd/3rd stage, the optimum temperature was revealed to be 550$^{\circ}C$. The XRD results of CIGS films showed a strong (112) preferred orientation and the Raman spectra of CIGS films showed only the Al mode peak at 173cm$\^$-1/. Scanning electron microscopy results revealed very small grains at 2nd/3rd stage growth temperature of 480$^{\circ}C$. At higher temperatures, the grain size increased together with a reduction in the number of the voids. The optimization of experimental parameters above mentioned, through the repeated fabrication and characterization of unit layers and devices, led to the highest conversion efficiency of 15.4% from CIGS-based thin film solar cell with a structure of Al/ZnO/CdS/CIGS/Mo/glass.

Hot Wall Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함 (Growth and photoluminescience propeties for $CuInSe_2$ single crystal thin film by Hot Wall Epitaxy)

  • 홍광준;이상열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.111-112
    • /
    • 2005
  • To obtain the single crystal thin films, $CuInSe_2$, mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wail epitaxy (HWE) system. The source and substrate temperatures were 620$^{\circ}C$ and 410$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobilily of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}$ $cm^{-3}$ and $296cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the CulnSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation E$_g$(T) = 1.1851 eV - ($8.99\times10^{-4}$ ev/K)T$_2$/(T + 153K). After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The nat ive defects of V$_{Cu}$, $V_{Se}$, Cu$_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

Development of a New Double Buffer Layer for Cu(In, Ga) $Se_2$ Solar Cells

  • Larina, Liudmila;Kim, Ki-Hwan;Yoon, Kyung-Hoon;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.152-153
    • /
    • 2006
  • The new approach to buffer layer design for CIGS solar cells that permitted to reduce the buffer absorption losses in the short wavelength range and to overcome the disadvantages inherent to Cd-free CIGS solar cells was proposed. A chemical bath deposition method has been used to produce a high duality buffer layer that comprises thin film of CdS and Zn-based film. The double layer was grown on either ITO or CIGS substrates and its morphological, structural and optical properties were characterized. The Zn-based film was described as the ternary compound $ZnS_x(OH)_y$. The composition of the $ZnS_x(OH)_y$ layer was not uniform throughout its thickness. $ZnS_x(OH)_y$/CdS/substrate region was a highly intermixed region with gradually changing composition. The short wavelength cut-off of double layer was shifted to shorter wavelength (400nm) compared to that (520 nm) for the standard CdS by optimization of the double buffer design. The results show the way to improve the light energy collection efficiency of the nearly cadmium-free CIGS-based solar cells.

  • PDF

Development of Thiourea-Formaldehyde Crosslinked Chitosan Membrane Networks for Separation of Cu (II) and Ni (II) Ions

  • Sudhavani, T.J.;Reddy, N. Sivagangi;Rao, K. Madhusudana;Rao, K.S.V. Krishna;Ramkumar, Jayshree;Reddy, A.V.R.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1513-1520
    • /
    • 2013
  • Novel chitosan (CS) based membrane networks were developed by solution casting and followed by crosslinking with different crosslinkers such as glutaraldehyde, urea-formaldehyde, and thiourea-formaldehyde. The developed membrane networks were designated as CS-GA, CS-UF and CS-TF. Crosslinking reaction of CS membranes was confirmed by Fourier transform infrared spectroscopy. Membrane rigidity and compactness were studied by the differential scanning calorimetry. The surface morphology of CS membranes was characterized by scanning electron microscopy. The sorption behaviour with respect to contact time, initial pH and initial metal ion concentration were investigated. The maximum adsorption capacity of CS-GA, CS-UF and CS-TF sorbents was found to be 1.03, 1.2 and 1.18 mM/g for $Cu^{2+}$ and 1.48, 1.55 and 2.18 mM/g for $Ni^{2+}$ respectively. Swelling experiments have been performed on the membrane networks at $30^{\circ}C$. Desorption studies were performed in acid media and EDTA and it was found that the membranes are reusable for the metal ion removal for three cycles. The developed membranes could be successfully used for the separation of $Cu^{2+}$ and $Ni^{2+}$ metal ions from aqueous solutions.

졸겔법에 의한 Bi-Sr-Ca-O계 초전도체 선재 제조 (Fabrication of Bi-Sr-Ca-Cu-O superconducting wire by the sol-gel method)

  • 장미혜;한병성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제5권2호
    • /
    • pp.175-181
    • /
    • 1992
  • Y-Ba-Cu-O계 보다 화학적 내구성이 좋은 Bi-Sr-Ca-Cu-O계 초전도체 wire를 중합 binder와 초전도체 파우더를 혼합하여 sol-gel법으로 제조하였다. 여러가지 혼합비와 열처리 조건하에서 제조한 wire의 특성분석 결과 Bi$_{2}$Sr$_{2}$Ca$_{2}$Cu$_{3}$O계 초전도체와 binder의 최적 혼합율은 22.25%이었고 가열비는 0.33.deg.C/min로 500.deg.C까지는 Ar gas와 $O_{2}$ gas분위기로 열처리하고 500.deg.C에서 835.deg.C까지는 $O_{2}$ gas분위기에서 40h동안 열처리하였을때 임계온도 98K를 갖는 초전도 선재를 얻을 수 있었다.

  • PDF

Hot Wall Epitaxy(HWE) 방법에 의해 성장된 $CuInS_2$ (Growth and Characterization of $CuInS_2$ Single Crystal Thin Film by Hot Wall Epitaxy)

  • 최승평;홍광준
    • 한국결정학회지
    • /
    • 제11권3호
    • /
    • pp.137-146
    • /
    • 2000
  • The stoichiometric mix of evaporating materials for he CuInS₂ single crystal thin films was prepared. To obtain the single crystal thin films, CuINS₂ mixed crystal was deposited on etched semi-insulator GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperature were 640℃ and 430℃, respectively and the thickness of the single crystal thin films was 2 ㎛. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility deduced from Hall data are 9.64x10/sup 22//㎥ and 2.95x10/sup -2/ ㎡/V·s, respectively at 293 K. he optical energy gap was found to be 1.53 eV at room temperature. From the photocurrent spectrum obtained by illuminating perpendicular light on the c-axis of the thin film, we have found that the values of spin orbit coupling splitting ΔSo and the crystal field splitting ΔCr were 0.0211 eV and 0.0045 eV at 10K, respectively. From PL peaks measured at 10K, were can assign the 807.7 nm (1.5350 eV) peak to E/sub x/ peak of the free exciton emission, the 810.3 nm(1.5301 eV) peak to I₂ peak of donar-bound exciton emission and the 815.6 nm(1.5201 eV) peak to I₁ peak of acceptor-bound excition emission. In addition, the peak observed at 862.0 nm(1.4383 eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

광전자실험을 이용한 $Y(Pr)Ba_2Cu_4O_8$ 물질의 체인 전자 구조분석 (Photoemission Studies on Chain Electronic Structures of $Y(Pr)Ba_2Cu_4O_8$)

  • 부영건;정원식;한가람;김창영
    • Progress in Superconductivity
    • /
    • 제13권3호
    • /
    • pp.158-162
    • /
    • 2012
  • $Y(Pr)Ba_2Cu_4O_8$ system is one of the most studied high temperature superconductors. Substitution of Pr for Y in this system suppresses $T_c$ and superconductivity finally disappears at a high Pr doping. There are competing theories for the suppression of $T_c$ but systematic experimental results are very rare. In order to find the change in Fermi surface topology which can affect the superconductivity, we have performed angle-resolved photoemission studies on single crystal samples of $YBa_2Cu_4O_8$ and $PrBa_2Cu_4O_8$. While the Fermi surface of $YBa_2Cu_4O_8$ shows a similar topology to those of other cuprates, we observe only 1D like band structures in $PrBa_2Cu_4O_8$. We find no significant differences in the chain band for both samples.

18% 효율 Cu(In,Ga)Se2 박막태양전지용 ZnSnO 버퍼층의 원자층 증착법 및 분석 (Characterization of Atomic-Layer Deposited ZnSnO Buffer Layer for 18%- Efficiency Cu(In,Ga)Se2 Solar Cells)

  • 김선철;김승태;안병태
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.54-60
    • /
    • 2015
  • ZnSnO thin films were deposited by atomic layer deposition (ALD) process using diethyl zinc ($Zn(C_2H_5)_2$) and tetrakis (dimethylamino) tin ($Sn(C_2H_6N)_4$) as metal precursors and water vapor as a reactant. ALD process has several advantages over other deposition methods such as precise thickness control, good conformality, and good uniformity for large area. The composition of ZnSnO thin films was controlled by varying the ratio of ZnO and $SnO_2$ ALD cycles. The ALD ZnSnO film was an amorphous state. The band gap of ZnSnO thin films increased as the Sn content increased. The CIGS solar cell using ZnSnO buffer layer showed about 18% energy conversion efficiency. With such a high efficiency with the ALD ZnSnO buffer and no light soaking effect, AlD ZnSnO buffer mighty be a good candidate to replace Zn(S,O) buffer in CIGSsolar cells.

폴리이미드 기판을 이용한 유연 Cu(In,Ga)Se2 박막 태양전지 제작

  • 박수정;조대형;이우정;위재형;한원석;정용덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.309.2-309.2
    • /
    • 2013
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 일반적으로 Na을 함유하고 있는 소다회유리를 기판으로 사용하여 제작되며, 높은 광전 변환 효율로 인해 많은 연구가 이루어지고 있다. 특히 제조 비용 절감과 양산성 향상을 위해 현재 유연 기판 CIGS 박막 태양전지에 대한 연구가 활발히 이루어지고 있으며, 폴리이미드 기판에서 20.4%의 최고 효율이 보고되었다. 유연 기판은 유리 기판 대비 무게가 가볍기 때문에 유리 기판 태양전지보다 활용도가 높으며, 우주용으로 사용할 경우 단위 무게 당 발생되는 전력이 높은 장점이 있다. 본 연구에서는 폴리이미드 기판을 이용하여 유연 CIGS 박막 태양전지를 제작하였다. 후면 전극 Mo은 DC sputtering으로 증착하였으며, Mo의 증착 압력에 따라 폴리이미드 기판의 잔류 응력과 전기적 특성을 분석하여 증착 압력을 결정하였다. 광흡수층인 CIGS는 다단계 동시 증발 법으로 증착하였으며, 2nd stage 공정온도는 유리 기판 대비 저온인 $475^{\circ}C$로 공정을 진행하였다. 저온공정인 $475^{\circ}C$ 공정에서는 Ga의 함량이 높아질수록 성능이 감소하였으며, Na 공급을 통해 Voc와 FF가 향상되어 성능이 향상됨을 알 수 있었다. 버퍼층 CdS는 습식 공정인 CBD법으로 증착하였으며, 공정변수인 thiourea의 농도와 CdS 박막의 두께 변화를 통해 폴리이미드 기판 CIGS 박막 태양전지에서 CdS 버퍼층의 최적의 조건을 도출하였다. 최종적으로 제작된 폴리이미드 기판 유연 CIGS 박막 태양전지는 반사 방지막 없이 개방전압 0.511V, 단락전류밀도 32.31mA/cm2, 충실도 64.50%, 변환효율 10.65%를 나타내었다.

  • PDF