• Title/Summary/Keyword: $Cu(In,\

Search Result 11,477, Processing Time 0.039 seconds

A Study on Properties of Low Temperature Sintering in the NiZn Ferrite System (NiZn 페라이트의 저온 소결 특성에 관한 연구)

  • 고상기;김병호;김경용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1074-1082
    • /
    • 1997
  • Microstructure and permeability as a function of sintering temperature and composition were studied on the Ni$\delta$Cu0.4-$\delta$Zn0.6Fe2O4 ($\delta$=0, 0.1, 0.2, 0.3, 0.4) which was prepared by Cu2+ substitution for Ni2+ in Ni.0.4Zn0.6Fe2O4, then followed by 8 wt% CuO and 1wt% Bi2O3 as sintering aids. It was found that NiCuZn ferrite in which Cu2+ is substituted for Ni2+ is more effective in reduction of sintering temperature than Ni.0.4Zn0.6Fe2O4, containing CuO as a sintering aid. The specimen $\delta$=0.2 sintered at 90$0^{\circ}C$ for 2hr exhibited the highest initial permeability value ($\mu$o=280 at 1Mhz), but the real permeability decreased at the frequency under 10 MHz. EPMA analysis showed that Ni$\delta$Cu0.4-$\delta$Zn0.6Fe2O4 ($\delta$=0.4), sintered at 95$0^{\circ}C$ for 2hrs consisted of three phase regions of Ni.0.3Cu0.1Zn0.6Fe2O4 region, Cu and Bi liquid existed at the 3-point boundary, although the stabilization energy of Ni2+ is higher than that of Cu2+ in B site.

  • PDF

Effects of dietary copper on organ indexes, tissular Cu, Zn and Fe deposition and fur quality of growing-furring male mink (Mustela vison)

  • Wu, Xuezhuang;Gao, Xiuhua;Yang, Fuhe
    • Journal of Animal Science and Technology
    • /
    • v.57 no.2
    • /
    • pp.6.1-6.5
    • /
    • 2015
  • The objectives of this study were to study the effects of different levels of dietary copper on organ indexes, tissular Cu, Zn and Fe deposition and fur quality of mink in the growing-furring periods. One hundred and five standard dark male mink were randomly assigned to seven groups with the following dietary treatments: basal diet with no supplemental Cu (Control); basal diet supplemented with either 6, 12, 24, 48, 96 and 192 mg/kg Cu from copper sulphate, respectively. The colour intensity scores displayed a linear trend (P = 0.057). The spleen Cu concentrations responded in a linear (P < 0.05) fashion with increasing level of Cu, but copper supplementation did not affect speen concentrations of Fe or Zn. Supplemental dose of Cu linearly increased (P < 0.05) liver Cu and Fe concentrations but did not alter (P > 0.10) liver Zn. Our results indicate that Cu plays an important role in the pigmentation in growing-furring mink, and supplemental dietary Cu in growing-furring mink improve hair colour, and copper has limited effects on liver mineral deposition.

Rapid Fabrication of Bi2212 Superconducting Films on Cu Tape with Cu-free Precursor (Cu-free 전구체를 이용한 동 테이프 위의 Bi2212 초전도 후막의 급속 제조)

  • 한상철;성태현;한영희;이준성;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.69-72
    • /
    • 1999
  • A Well oriented Bi$_2$re$_2$CaCu$_2$O$\sub$8/(Bi2212) superconductor thick films were formed successfully on a copper substrate by liquid reaction between a Cu-free precursor and Cu tape using method in which Cu-free BSCO powder mixture was printed on copper plate and heat-treated. And we examined the mechanism for the rapid formation of Bi2212 superconducting films from observing the surface microstructure with heat-treatment time. At heat-treatment temperature, the printing layer partially melt by reacting with CuO of the oxidizing copper plate, and the nonsuperconducting phases present in the melt are typically Bi-free phases and Cu-free phases. Following the partial melting, the Bi$_2$Sr$_2$CaCu$_2$O$\sub$8/ superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. It was confirmed that the phase colony from the phase diagram of Bi$_2$O$_3$-(SrO+CaO)/2-CuO system is similar to the observed result.

  • PDF

Electrochemical Performances of the Sn-Cu Alloy Negative Electrode Materials through Simple Chemical Reduction Method

  • Oh, Ji Seon;Kim, Duri;Chae, Seung Ho;Oh, Seungjoo;Yoo, Seong Tae;Kim, Haebeen;Ryu, Ji Heon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.329-334
    • /
    • 2019
  • Sn-Cu alloy powders were prepared via a simple chemical reduction method for the negative electrode materials in lithiumion batteries. The addition of Cu can suppress the growth of Sn particles during synthetic process. Furthermore, the Cu also acts as a matrix phase against the volume change during cycling. With increasing amount of the Cu, a stable $Cu_6Sn_5$ phase formed in the Sn-Cu alloy and its cycle performance greatly enhanced depending on the Cu content. To promote the generation of the $Cu_6Sn_5$ phase, the synthesis temperature is raised to $60-100^{\circ}C$ from the ambient temperature. The Sn-Cu alloy powders prepared at elevated temperatures showed remarkable cycle performances. The Sn-Cu alloy powder obtained at $60^{\circ}C$ exhibited a significantly high volumetric capacity of over 2,000 mAh/cc at the 50th cycle.

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho;Lee, Ji Won;Kim, JunHo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1794-1798
    • /
    • 2018
  • We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.

A Study on the Tribological Characteristics of PTFE Composites-filled with Nano CuO Particles Under a Slow Sliding Speed and Low Load Condition (나노 CuO입자로 충진된 PTFE 나노복합소재의 저속 및 하중 조건에서의 트라이볼로지 특성에 관한 연구)

  • Minhaeng Cho;Junghwan Kim
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.111-117
    • /
    • 2023
  • This paper presents an experimental investigation of the tribological characteristics of PTFE composites filled with nano CuO particles under low sliding speed and load. All the specimens were prepared by sintering. Before sintering, the mixture of PTFE powder and CuO particles were mixed by a high-speed mixer using CuO volume fractions of 0.2 vol. % and 5 vol. %. Each mixture was sintered at 350 ℃ for 30 min on the steel disk. We conducted ball-on-disk sliding test an hour using a steel ball against PTFE composites, including pure PTFE. The load and sliding speed used was 2 N and 0.01 m/s, respectively. Adding nano CuO particles increases the friction coefficient because of the abrasiveness of hard nano CuO particles. The highest coefficient of frictions was obtained from 5 vol. % CuO. Conversely, the lowest wear of the composites was obtained from the 5 vol. % CuO nanocomposite. This study reveals that the addition of nano CuO particles can lower the wear of PTFE, despite an increase in the coefficient of friction. However, the coefficient friction is still moderate compared to other engineering polymers. In addition, the amount of CuO nano particles has to be optimized to reduce friction and wear at the same time.

Activation Energy for Intermetallic Compound Formation of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu Solder Joints (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 솔더 접합계면의 금속간화합물 형성에 필요한 활성화에너지)

  • Hong, Won-Sik;Kim, Whee-Sung;Park, Noh-Chang;Kim, Kwang-Bae
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.82-88
    • /
    • 2007
  • Sn-3.0Ag-0.5Cu lead fee solder was generally utilized in electronics assemblies. But it is insufficient to research about activation energy(Q) that is applying to evaluate the solder joint reliability of environmental friendly electronics assemblies. Therefore this study investigated Q values which are needed to IMC formation and growth of Sn-3.0Ag-0.5Cu/Cu and Sn-40pb/Cu solder joints during aging treatment. We bonded Sn-3.0Ag-0.5Cu and Sn-40Pb solders on FR-4 PCB with Cu pad$(t=80{\mu}m)$. After reflow soldering, to observe the IMC formation and growth of the solder joints, test specimens were aged at 70, 150 and $170^{\circ}C$ for 1, 2, 5, 20, 60, 240, 960, 15840, 28800 and 43200 min, respectively. SEM and EDS were utilized to analysis the IMCS. From these results, we measured the total IMC$(Cu_6Sn_5+Cu_3Sn)$ thickness of Sn-3.0Ag-0.5Cu/Cu and Sn-40Pb/Cu interface, and then obtained Q values for the IMC$(Cu_6Sn_5,\;Cu_3Sn)$ growth of the solder joints.

Interfacial Reaction Characteristics of a Bi-20Sb-10Cu-0.3Ni Pb-free Solder Alloy on Cu Pad (Bi-10Cu-20Sb-0.3Ni 고온용 무연 솔더와 Cu와의 계면 반응 특성)

  • Kim, Ju-Hyung;Hyun, Chang-Yong;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Interfacial reaction characteristics of a Bi-10Cu-20Sb-0.3Ni Pb-free alloy on Cu pad was investigated by reflow soldering at $430^{\circ}C$. The thickness of interfacial reaction layers with respect to the soldering time was also measured. After the reflow soldering, it was observed that a $(Cu,Ni)_2Sb$, a $Cu_4Sb$ intermetallic layer, and a haze layer, which is consisted of Bi and $Cu_4Sb$ phases, were successively formed at the Bi-10Cu-20Sb-0.3Ni/Cu interface. The total thickness of the reaction layers was found to be linearly increased with increasing of the reflow soldering time up to 120 s. As the added Ni element did not participate in the formation of the thickest $Cu_4Sb$ interfacial layer, suppression of the interfacial growth was not observed.

Electromigration and Thermomigration in Flip-Chip Joints in a High Wiring Density Semiconductor Package

  • Yamanaka, Kimihiro
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • Keys to high wiring density semiconductor packages include flip-chip bonding and build-up substrate technologies. The current issues are the establishment of a fine pitch flip-chip bonding technology and a low coefficient of thermal expansion (CTE) substrate technology. In particular, electromigration and thermomigration in fine pitch flipchip joints have been recognized as a major reliability issue. In this paper, electromigration and thermomigration in Cu/Sn-3Ag-0.5Cu (SAC305)/Cu flip-chip joints and electromigration in Cu/In/Cu flip chip joints are investigated. In the electromigration test, a large electromigration void nucleation at the cathode, large growth of intermetallic compounds (IMCs) at the anode, a unique solder bump deformation towards the cathode, and the significantly prolonged electromigration lifetime with the underfill were observed in both types of joints. In addition, the effects of crystallographic orientation of Sn on electromigration were observed in the Cu/SAC305/Cu joints. In the thermomigration test, Cu dissolution was accelerated on the hot side, and formation of IMCs was enhanced on the cold side at a thermal gradient of about $60^{\circ}C$/cm, which was lower than previously reported. The rate of Cu atom migration was found comparable to that of electromigration under current conditions.

Fabrication Method of High-density and High-uniformity Solder Bump without Copper Cross-contamination in Si-LSI Laboratory (실리콘 실험실에 구리 오염을 방지 할 수 있는 고밀도/고균일의 Solder Bump 형성방법)

  • 김성진;주철원;박성수;백규하;이희태;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • We demonstrate the fabrication method of high-density and high-quality solder bump solving a copper (Cu) cross-contamination in Si-LSI laboratory. The Cu cross-contamination is solved by separating solder-bump process by two steps. Former is via-formation process excluding Cu/Ti under ball metallurgy (UBM) layer sputtering in Si-LSI laboratory. Latter is electroplating process including Ti-adhesion and Cu-seed layers sputtering out of Si-LSI laboratory. Thick photoresist (PR) is achieved by a multiple coating method. After TiW/Al-electrode sputtering for electroplating and via formation in Si-LSI laboratory, Cu/Ti UBM layer is sputtered on sample. The Cu-seed layer on the PR is etched during Cu-electroplating with low-electroplating rate due to a difference in resistance of UBM layer between via bottom and PR. Therefore Cu-buffer layer can be electroplated selectively at the via bottom. After etching the Ti-adhesion layer on the PR, Sn/Pb solder layer with a composition of 60/40 is electroplated using a tin-lead electroplating bath with a metal stoichiometry of 60/40 (weight percent ratio). Scanning electron microscope image shows that the fabricated solder bump is high-uniformity and high-quality as well as symmetric mushroom shape. The solder bumps with even 40/60 $\mu\textrm{m}$ in diameter/pitch do not touch during electroplating and reflow procedures. The solder-bump process of high-uniformity and high-density with the Cu cross-contamination free in Si-LSI laboratory will be effective for electronic microwave application.

  • PDF