• Title/Summary/Keyword: $Co_3O_4/MnO_2$

Search Result 384, Processing Time 0.03 seconds

Properties Changing depends on Substituents or Dopants of Li-Mn oxide material (Li-Mn계 산화물의 치환 및 첨가에 따른 물성 변화)

  • Lee, Dae-Jin;Ji, Mi-Jung;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.289-289
    • /
    • 2007
  • Spinel structured $LiMn_2O_4$ is more economic and environmental friendly to be used as commercial active material for secondary battery compared to Co-oxide material active material, but spinel structure of $LiMn_2O_4$ is unstable and its capacitance decreases with increase of cycle. Therefore, the purpose of our sturdy is to improve the stability of $LiMn_2O_4$ spinel structure and increase its capacitance by using substituents or dopants. $LiMn_2O_4$ powder was synthesized by charging substituents or dopants mole fractions, and temperatures. Crystal state, structure and specific surface area of the synthesized powder were measured and also characteried electrochemically by measuring its impedance, charge-discharge capacitance and etc.

  • PDF

Determination of the Thermolelectric Properties of NaxCo2O4 by Controlling the Concentration of Na and Additive (NaxCo2O4의 열전특성에 미치는 Na 함량변화와 첨가제의 효과)

  • Choi, Soon-Mok;Jeong, Seong-Min;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.689-694
    • /
    • 2009
  • Layer-structured $Na_xCo_2O_4$ was synthesized from $Na_2CO_3\;and\;Co_3O_4$ powders. The chemical concentrations of Na and additive were controlled to enhance the thermoelectric properties over the temperature range from 400 K to 1,150 K. As a result, we obtained the maximum thermoelectric properties at a single phase region with Na content of x=1.5. When Na content was smaller than x=1.5, the thermoelectric properties was low due to formation of second phases of CoO and other oxides. Additionally, Mn was doped to improve thermoelectric properties by means of decreasing thermal conductivity. The results showed that the concentrations of both Na and Mn are all governing factors to determine the thermoelectric properties of $Na_xCo_2O_4$ system.

Analyses on the Physical and Electrochemical Properties of Al2O3 Coated LiCoO2 (리튬이차전지용 양극 활물질(LiCoC2)의 표면처리의 특성 분석 및 전기화학적 특성 고찰)

  • Chang, Youn-Han;Choi, Sei-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.184-189
    • /
    • 2007
  • The importance of secondary battery industry is getting excited according to the development of battery industry as a high efficiency energy supplier of electronic machine of mobile information such as mobile phone, lap-top computer, PDA. It is rasing the interest about security of safety and high efficiency of cathode material for main part of secondary lithium battery. The cathode material which has been used like $LiCoO_2,\;LiMn_2O_4,\;LiNi_xCo_yMn_zO_2,\;LiNi_xCo_yM_zO_2$ (M=Al, Zr, Mg etc.,) the most typical material is $LiCoO_2$. But it is studying the development of substitute such as efficiency amelioration of $LiCoO_2$, thetiary element, olivine element because of the capacity of $LiCoO_2$, the matter of security; especially the betterment of efficiency, security research of safety has been actively processed in domestic and overseas about surface coating treatment of active cathode which is using oxide ($M_xO_3$). This study analyses side effect of battery according to increase of surface treatment, formation of precipitation for reagent condensation, non-reagent residue of oxide ($M_xO_3$) which is remains during the surface treatment of $LiCoO_2$; conducts study of new process, the consideration of the electrochemical property to improve oxide solution of mixing rate, mixture of surface treatment, dryness, calcinations conditionetc.

Effects of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]O2 Lithium-ion Cathode Materials (리튬 이차전지용 양극활물질 Li[Ni0.6Co0.2Mn0.2]O2의 소성 온도가 전기화학적 특성에 미치는 영향)

  • Yoo, Gi-Won;Jeon, Hyo-Jin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Using $Na_2CO_3$ and $MeSO_4$ (Me = Ni, Co and Mn) as starting materials, the precursor of $[Ni_{0.6}Co_{0.2}Mn_{0.2}]CO_3$ has been synthesized by carbonate co-precipitation. The precursor was mixed with $Li_2CO_3$, and calcined at 750, 850, and$950^{\circ}C$ in air. Effect of calcinations temperature on characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ cathode materials was investigated. The structure and characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ were determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrochemical measurements. The X-ray diffraction (XRD) results show that the intensity ratio of $I_{(003)}/I_{(104)}$ increased and the R-factor ratio decreased with the increase of calcinations temperature. And Scanning electron microscopy (SEM) result show that the primary particle size increased. Especially, the $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ calcined at $950^{\circ}C$ for 24 H shows excellent electrochemical performances with reversible specific capacity of $165.3mAhg^{-1}$ [cut-off voltage 2.5~4.3 V, 0.1 C($17mAhg^{-1}$)] and good capacity retention of 95.4% after 50th charge/discharge cycles[cut-off voltage 2.5~4.3 V, 1 C($170mAhg^{-1}$)].

The study on Fabrication and Characterization of $LiMn_{2-x}Cu_{x}O_{4}$for cathode material of Lithium-ion Battery (리튬이온 이차전지 양극활물질 $LiMn_{2-x}Cu_{x}O_{4}$의 제작과 전극특성에 관한 연구)

  • 박종광;고건문;홍세은;윤기웅;안용호;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.713-716
    • /
    • 2001
  • In many papers, the electrochemical analysis of LiMn$_2$O$_4$shows the transition results of Mn$^{3+}$ ion. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mnl$^{3+}$ ions. To analyze the cycle performance of LiMn$_{2-x}$Cu$_{x}$ O$_4$as the cathode of 4 V class lithium secondary batteries, XRD, TGA analysis were conducted. Although the cycle performance of the LiMn$_{2-x}$Cu$_{x}$ O$_4$was improved from pure LiMn$_2$O$_4$, the discharge capacity was significantly lower than LiCoO$_2$. In this paper, We study the Electrochemical characterization and enhanced stability of Cu-doped spinels in the LiMn$_{2-x}$Cu$_{x}$ O$_4$upon initial cycling.l cycling.

  • PDF

Characteristics of Mn-Ni-Co system for automobile fuel shortage detecting sensor with $Bi_2O_3$ addition ($Bi_2O_3$를 첨가한 Mn-Ni-Co계 써미스타의 자동차 연료 부족 감지용 센서 특성)

  • 윤중락;이헌용;김두용;오창섭
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.455-462
    • /
    • 1996
  • Automobile Fuel Shortage Detecting Sensor, in this paper, was fabricated by using heat dissipation coefficient difference between gasoline and air condition the NTC thermistor of Mn-Ni Co system with the composition ratio of Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt%. The condition of sensor operation is that, for turn-on characteristics, the time of arriving at 135mA must be less than 180 second when the DC voltage of 11V is applied in the air condition of -10.deg. C and that, for turn-off characteristics, the saturation current must be less than 60mA when the DC voltage of 15V is applied in the gasoline condition of 60.deg. C. It is known, from the experimental results, that the resistance range and B-constant for the Automobile Fuel Shortage Detecting Sensor with dimension of 5*3*0.9mm were 850-1150.ohm. and 1150-1250.deg. C, respectively and the resistance range and B-constant were agree with that of sensor operation condition. When Bi$_{2}$O$_{3}$ of 0-0.5wt% was added to Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt% composition, the resistivity and B-value were 380-430(.ohm.-cm) and 1930 - 2030, respectively. Particularly, for Bi$_{3}$O$_{3}$ of 0.25-0.5wt%, the sintering density of over 90% and the operation characteristics necessary to Automobile Fuel Shortage Detecting Sensor were obtained. The difference of heat dissipation coefficient gasoline and air condition was 15 times.

  • PDF

Sintering and the Optical Properties of Mn3O4-added Al2O3 (Mn3O4를 첨가한 Al2O3 세라믹스의 소결 및 광학 특성)

  • Kim, Jin-Ho;Baik, Seung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.539-545
    • /
    • 2016
  • Alumina added with Mn3O4 up to 7.5 cat% of Mn was prepared by conventional ceramic processing, and the sintering behavior and the optical properties of which were studied as functions of Mn content. Densification and grain growth of alumina were enhanced by Mn addition up to 0.75 cat% but was leveled off at higher concentrations. XRD revealed that $Al_2MnO_4$(galaxite) was formed as a second phase in the specimens with more than 0.75 cat% of Mn. Thus it is believed that either the solid solution effect of Mn or the Zener effect of $Al_2MnO_4$ becomes predominant in the sintering of Mn-added $Al_2O_3$ according to the additive concentration. UV-VIS reflectivity(SCI) spectra of Mn-added $Al_2O_3$ consisted of smooth bottoms in 300~550 nm wavelength range and plateaus at wavelengths longer than 650 nm. The reflectivity spectrum continuously moved downward, and the specimen color became darker and thicker with increasing Mn content. The CIELAB color change with respect to standard white was also dependent on the amount of Mn added: ${\Delta}L^*$(D65) negatively increased and ${\Delta}E_{ab}^*$(D65) positively increased with increasing Mn content, probably due to Mn substitution to Al and/or the mixing effect of black $Al_2MnO_4$ as a second phase.

Structural and Electrical Properties of CoxMn3-xO4 Ceramics for Negative Temperature Coefficient Thermistors

  • Kim, Kyeong-Min;Lee, Sung-Gap;Kwon, Min-Su
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.330-333
    • /
    • 2017
  • $Co_xMn_{3-x}O_4$ ($1.48{\leq}x{\leq}1.63$) ceramics were fabricated using the solid-state reaction method. Structural and electrical properties of specimens based on the composition ratio of Co were observed in order to investigate their applicability in NTC thermistors. All specimens showed a single spinel phase with a homogeneous tetragonal structure. The $Co_{1.57}Mn_{1.43}O_4$ specimen showed a maximum average grain size of approximately $6.47{\mu}m$. In all specimens, TCR properties displayed excellent characteristics of over $-4.2%/^{\circ}C$. The resistivity at 298 K and B-value of the $Co_{1.57}Mn_{1.43}O_4$ specimen were approximately $418{\Omega}-cm$ and 4300, respectively.

Heat Treatment Effect of Seed on Synthesis of Chemical Manganese Dioxide (CMD) and Electrochemical Properties of LiMn2O4 obtained from the CMD (Chemical Manganese Dioxide (CMD) 합성에서의 Seed의 열처리 효과 및 그 CMD로부터 제조되는 LiMn2O4의 전지특성)

  • Kim, Sung-Wook;Cho, Hae-Ran;Roh, Gwang Chul;Park, Sun-Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.460-464
    • /
    • 2013
  • A series of Mn compound were prepared by seed-assisted method. The seed used in this reaction was manufactured by calcination of $MnCO_3$ at various temperatures and effects of the calcination temperature on seed-assisted reaction were investigated. With increase of the calcination temperature, CMD (${\gamma}-MnO_2$) was recovered after seed-assisted reactions. LMO used as cathode active material in the Li-ion batteries were synthesized from Mn source obtained in the seed-assisted reaction and the electrochemical properties (rate capability, cycle life performance and specific capacity) of the LMO were investigated. The LMO synthesized from the CMD which is obtained by the reaction with seed prepared by calcination of $MnCO_3$ more than $350^{\circ}C$ shown good electrochemical properties.

Preparation and Electrical Properties of $ErMnO_3$Thin Film Using Sol-Gel Process (Sol-Gel 공정을 이용한 $ErMnO_3$박막 제조 및 전기적 특성)

  • 류재호;김유택;김응수;강승구;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.981-986
    • /
    • 2000
  • Er(NO$_3$)$_3$.5$H_2O$, Mn($CH_3$$CO_2$)$_2$.4$H_2O$를 출발원료로 사용하여 졸-겔법으로 제조한 ErMnO$_3$박막의 열처리 온도 및 기판 배향성에 따른 박막 배향성과 누설 전류 특성에 관하여 연구하였다. ErMnO$_3$박막은 75$0^{\circ}C$ 이하의 온도에서 1시간 열처리 시비정질상태였으나, 78$0^{\circ}C$ 이상의 온도에서 hexagonal pahse인 ErMnO$_3$로 결정화되었다. 열처리 온도가 증가할수록 기판 배향성과 무관하게 모든 방향으로 결정이 성장함을 알 수 있었다. 결정화 정도와 결정 성장 축에 따라 누설 전류 값이 변화함을 알 수 있었고, 80$0^{\circ}C$에서 열처리한 시편에서는 누설 전류 변화가 비선형적인 경향으로 증가하였으며, $10^{-5}$ A/$ extrm{cm}^2$ 이하로 유지되었다.

  • PDF