DOI QR코드

DOI QR Code

Heat Treatment Effect of Seed on Synthesis of Chemical Manganese Dioxide (CMD) and Electrochemical Properties of LiMn2O4 obtained from the CMD

Chemical Manganese Dioxide (CMD) 합성에서의 Seed의 열처리 효과 및 그 CMD로부터 제조되는 LiMn2O4의 전지특성

  • Kim, Sung-Wook (Energy Efficient Materials Team, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Hae-Ran (Energy Efficient Materials Team, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Roh, Gwang Chul (Energy Efficient Materials Team, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Sun-Min (Energy Efficient Materials Team, Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
  • 김성욱 (한국세라믹기술원 에너지환경본부 에너지효율소재팀) ;
  • 조해란 (한국세라믹기술원 에너지환경본부 에너지효율소재팀) ;
  • 노광철 (한국세라믹기술원 에너지환경본부 에너지효율소재팀) ;
  • 박선민 (한국세라믹기술원 에너지환경본부 에너지효율소재팀)
  • Received : 2013.05.16
  • Accepted : 2013.06.14
  • Published : 2013.08.01

Abstract

A series of Mn compound were prepared by seed-assisted method. The seed used in this reaction was manufactured by calcination of $MnCO_3$ at various temperatures and effects of the calcination temperature on seed-assisted reaction were investigated. With increase of the calcination temperature, CMD (${\gamma}-MnO_2$) was recovered after seed-assisted reactions. LMO used as cathode active material in the Li-ion batteries were synthesized from Mn source obtained in the seed-assisted reaction and the electrochemical properties (rate capability, cycle life performance and specific capacity) of the LMO were investigated. The LMO synthesized from the CMD which is obtained by the reaction with seed prepared by calcination of $MnCO_3$ more than $350^{\circ}C$ shown good electrochemical properties.

본 연구에서는 $LiMn_2O_4$ 제조에서 Mn 원료로 사용되는 CMD를 seed 첨가법을 사용하여 제조하고자 하였으며, Seed의 열처리 온도가 CMD 합성에 미치는 영향을 고찰하고, 그로부터 제조되는 $LiMn_2O_4$의 전기화학적 특성을 평가하고자 하였다. 제조한 시료의 물성평가는 X-선 회절 분석법(XRD), 주사전자현미경(SEM)을 통하여 실시하였다. 그 결과, $MnCO_3$$300^{\circ}C$ 이상의 온도에서 열처리하여 seed로 사용할 경우 ${\gamma}-MnO_2$ 상의 CMD가 얻어졌으며, 그 CMD를 LMO 제조에 사용할 경우 전기화학적 특성이 비교적 우수한 LMO가 얻어졌다.

Keywords

References

  1. Whittingham, M. S., "Lithium Batteries and Cathode Materials," Chem. Rev., 104, 4271-4301(2004). https://doi.org/10.1021/cr020731c
  2. Armand, M. and Tarascon, J. M., "Building Better Batteries," Nature., 451, 652-657(2008). https://doi.org/10.1038/451652a
  3. Park, O. K., Cho, Y., Lee, S., Yoo, H. C., Song, H. K. and Cho, J., "Who Will Drive Electric Vehicles, Olivine or Spinel?," Energy Environ. Sci., 4, 1621-1633(2011). https://doi.org/10.1039/c0ee00559b
  4. Shim, J., Kostecki, R., Richardson, T., Song, X. and Striebel, K. A., "Electrochemical Analysis for Cycle Performance and Capacity Fading of a Lithium-ion Battery Cycled at Elevated Temperature," J. Power Sources., 112, 222-230(2002). https://doi.org/10.1016/S0378-7753(02)00363-4
  5. Jiao, F., Shaju, K. M. and Bruce, P. G., "Synthesis of Nanowire and Mesoporous Low-temperature $LiCoO_{2}$ by a Post-templating Reaction," Angew. Chem.-Int. Edit., 44, 6550-6553(2005). https://doi.org/10.1002/anie.200501663
  6. Li, X. F. and Xu, Y. L., "Enhanced Cycling Performance of Spinel $LiMn_{2}O_{4}$ Coated with $ZnMn_{2}O_{4}$ Shell," J. Solid State Electrochem., 12, 851-855(2008). https://doi.org/10.1007/s10008-007-0426-x
  7. Gnanaraj, J. S., Pol, V. G., Gedanken, A. and Aurbach, D., "Improving the High-temperature Performance of $LiMn_{2}O_{4}$ Spinel Electrodes by Coating the Active Mass with MgO via a Sonochemical Method," Electrochem. Commun., 5, 940-945(2003). https://doi.org/10.1016/j.elecom.2003.08.012
  8. Hong, Y. S., Han, C. H., Kim, K., Kwon, C. W., Campet, G. and Choy, J. H., "Structural and Electrochemical Properties of the Spinel $Li(Mn_{2-x}Li_{x/4}Co_{3x/4})O_{4}$, " Solid State Ion., 139, 75-81(2001). https://doi.org/10.1016/S0167-2738(00)00821-3
  9. Komaba, S., Oikawa, K., Myung, S. T., Kumagai, N. and Kamiyama, T., "Neutron Powder Diffraction Studies of $LiMn_{2-y}Al_{y}O_{4}$ Synthesized by the Emission Drying Method," Solid State Ion., 149, 47-52(2002). https://doi.org/10.1016/S0167-2738(02)00168-6
  10. Amine, K., Tukamoto, H., Yasuda, H. and Fujita, Y., "Preparation and Electrochemical Investigation of $LiMn_{2-x}Me_{x}O_{4}$ (Me: Ni, Fe, and x=0.5, 1) Cathode Materials for Secondary Lithium Batteries," J. Power Sources., 68, 604-608(1997). https://doi.org/10.1016/S0378-7753(96)02590-6
  11. He, X. M., Li, J. J., Cai, Y., Jiang, C. Y. and Wan, C. R., "Preparation of Spherical Spinel $LiMn_{2}O_{4}$ Cathode Material for Liion Batteries," Mater. Chem. Phys., 95, 105-108(2006). https://doi.org/10.1016/j.matchemphys.2005.06.006
  12. Lu, W., Belharouak, I., Park, S. H., Sun, Y. K. and Amine, K., "Isothermal Calorimetry Investigation of $Li_{1+x}Mn_{2-y}Al_{z}O_{4}$ Spinel," Electrochim. Acta., 52, 5837-5842(2007). https://doi.org/10.1016/j.electacta.2007.03.005
  13. Eftekhari, A., "Aluminum Oxide as a Multi-function Agent for Improving Battery Performance of $LiMn_{2}O_{4}$ Cathode," Solid State Ion., 167, 237-242(2004). https://doi.org/10.1016/j.ssi.2004.01.016
  14. Ferracin, L. C., Amaral, F. A., Bocchi, N., "Characterization and Electrochemical Per-formance of the Spinel $LiMn_{2}O_{4}$ Prepared from $\upsilon$-$MnO_{2}$," Solid State Ion., 130, 215-220(2000). https://doi.org/10.1016/S0167-2738(00)00614-7
  15. Chou, S. L., Cheng, F. Y. and Chen, J., "Electrodeposition Synthesis and Electro-chemical Properties of Nanostructured Gamma- $MnO_{2}$ FILms," J. Power Sources., 162, 727-734(2006). https://doi.org/10.1016/j.jpowsour.2006.06.033
  16. Hill, L. I., Verbaere, A. and Guyomard, D., "$MnO_{2}$ $(\alpha-, \beta-, \gamma-)$ Compounds Prepared by Hydrothermal-electrochemical Synthesis: Characterization, Morphology, and Lithium Insertion Behavior," J. Power Sources., 119, 226-231(2003).
  17. Lee, J. W., Kim, J. I., Roh, K. C., Park, S. M. and Kim, K., "Electrochemical Performances of Li-Mn Spinel Synthesized from Nanosized Chemical Manganese Dioxide," Solid State Sciences., 12, 1687-1691(2003).
  18. Zhang, S. S. and Jow, T. R., "Optimization of Synthesis Condition and Electrode Fabri-cation for Spinel $LiMn_{2}O_{4}$ Cathode," J. Power Sources., 109, 172-177(2002). https://doi.org/10.1016/S0378-7753(02)00063-0
  19. Yang, L. X., Zhu, Y. J., Tong, H. and Wang, W. W., "Submicrocubes and Highly Oriented Assemblies of $MnCO_{3}$ Synthesized by Ultrasound Agitation Method and Their Thermal Transformation to Nanoporous $Mn_{2}O_{3}$," Ultrason. Sonochem., 14, 259-265(2007). https://doi.org/10.1016/j.ultsonch.2006.05.006
  20. Zhao, J. Z., Tao, Z. L., Liang, J. and Chen, J., "Facile Synthesis of Nanoporous $\gamma$-$MnO_{2}$ Structures and Their Application in Rechargeable Li-ion Batteries," Cryst. Growth. Des., 8, 2799-2805(2008). https://doi.org/10.1021/cg701044b
  21. Yang, Z. H., Zhang, W. X., Wang, Q., Song, X. M. and Qian, Y. T., "Synthesis of Porous and Hollow Microspheres of Nanocrystalline $Mn_{2}O_{3}$," Chem. Phys. Lett., 418, 46-49(2006). https://doi.org/10.1016/j.cplett.2005.10.076
  22. Pistoia, G., Antonini, A., Zane, D. and Pasquali, M., "Synthesis of Mn Spinels From Different Polymorphs of $MnO_{2}$," J. Power Sources., 56, 37-43(1995). https://doi.org/10.1016/0378-7753(95)80006-3