• Title/Summary/Keyword: $Co_2(CO)_8$

Search Result 8,672, Processing Time 0.051 seconds

The effects of the novel IDPc inhibitor, DA-11004, on NADPH generation, insulin secretion, and glucose level in obese diabetic (ob/ ob) mice

  • Lee, In-Ki;Yell, Shin-Chang;Bup, Sohn-Jin;Young, Jeong-Mi;Son-Miwon;Jun, Bae-Cheol;Soo, Byun-Jong;Kim, Dong-Sung;Kim, Soon-Hae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.132.2-133
    • /
    • 2003
  • The biological effects of NADPH-dependent isocitrate dehydrogenase (IDPc) inhibitor, DA-11004, was investigated in obese diabetic (ob/ ob) mice. DA-11004, metformin, and oxalomalate were daily injected (ip) for 8 weeks and after completing an 8-week period of experiment, mice were sacrificed at 1 hr after the last drugs treatment to collect their blood, liver, and adipose tissues(epididymal and retroperitoneal fat). (omitted)

  • PDF

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

Feasibility Study of HDDR and Mechanical Milling Processes for Preparation of High Coercivity SmCo5 Powder

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.124-127
    • /
    • 2003
  • HDDR (hydrogenation, disproportionation, desorption, recombination) and mechanical milling processes have been applied to the $SmCo_{5}$ alloy in an attempt to produce a highly coercive powder. The $SmCo_{5}$ alloy had very high structural stability under the hydrogen atmosphere and the 1:5 phase was only partially disproportionated under up to 10 kgf/$\textrm{cm}^2$ hydrogen gas. The partially disproportionated material was recombined not into 1:5 phase after the HDDR, but rather into multi-phase mixture consisting of 1:5, 2:17, 2:7 and 1:7 phases. The $SmCo_{5}$ alloy HDDR-treated with hydrogen up to 10 kgf/$\textrm{cm}^2$ had poor coercivity. For a useful HDDR to prepare a high coercivity $SmCo_{5}$ alloy powder, much higher hydrogen pressure well exceeding 10 kgf/$\textrm{cm}^2$ would be required. The $SmCo_{5}$ alloy lump was amorphized by an intensive mechanical milling, and it was crystallised ultra-finely by a subsequent optimum annealing. The optimally annealed material had very high coercivity, and it was found that the mechanical milling followed by an annealing was an effective way of producing highly coercive $SmCo_{5}$ alloy powder.

Immobilization of GH78 α-L-Rhamnosidase from Thermotoga petrophilea with High-Temperature-Resistant Magnetic Particles Fe3O4-SiO2-NH2-Cellu-ZIF8 and Its Application in the Production of Prunin Form Naringin

  • Xu, Jin;Shi, Xuejia;Zhang, Xiaomeng;Wang, Zhenzhong;Xiao, Wei;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.419-428
    • /
    • 2021
  • To efficiently recycle GH78 thermostable rhamnosidase (TpeRha) and easily separate it from the reaction mixture and furtherly improve the enzyme properties, the magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8 (FSNcZ8) was prepared by modifying Fe3O4-NH2 with tetraethyl silicate (TEOS), microcrystalline cellulose and zinc nitrate hexahydrate. FSNcZ8 displayed better magnetic stability and higher-temperature stability than unmodified Fe3O4-NH2 (FN), and it was used to adsorb and immobilize TpeRha from Thermotoga petrophilea 13995. As for properties, FSNcZ8-TpeRha showed optimal reaction temperature and pH of 90℃ and 5.0, while its highest activity approached 714 U/g. In addition, FSNcZ8-TpeRha had better higher-temperature stability than FN. After incubation at 80℃ for 3 h, the residual enzyme activities of FSNcZ8-TpeRha, FN-TpeRha and free enzyme were 93.5%, 63.32%, and 62.77%, respectively. The organic solvent tolerance and the monosaccharides tolerance of FSNcZ8-TpeRha, compared with free TpeRha, were greatly improved. Using naringin (1 mmol/l) as the substrate, the optimal conversion conditions were as follows: FSNcZ8-TpeRha concentration was 6 U/ml; induction temperature was 80℃; the pH was 5.5; induction time was 30 min, and the yield of products was the same as free enzyme. After repeating the reaction 10 times, the conversion of naringin remained above 80%, showing great improvement of the catalytic efficiency and repeated utilization of the immobilized α-L-rhamnosidase.

Measurements of the Degree of Atmospheric Pollution in Seoul, Korea. (서울특별시에서의 공기 오염도 측정)

  • Kwon, Sang-Wook;Kim, Myon-Sop
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.116-120
    • /
    • 1965
  • The degree of atmospheric pollution from automobile engine exhausts has been measured at 1-ga, Eulchiro, Jung-ku, one of the heaviest traffic junctions in Seoul. By determining the concentrations of Pb, $SO_2, NO_2, NO, CO \;and\; CO_2$ in atmospheric air measured are as follows: Pb, $21{\sim}2 {\mu]g./m^3.;\;SO_2,\;0.33{\sim}0.001\;ppm.;\;NO_2,$ $0.20{\sim}< 0.01\;ppm.;\;NO,\;1.30{\sim}0.02\;ppm.;\;CO,\;40{\sim}<\;5ppm$.; and $CO_2,\;0.040{\sim}0.034%$. The mean concentrations determined are as follows: Pb, $11 {\mu}g./m^3.; SO_2, 0.08 ppm.; NO_2,$ 0.09 ppm.; NO, 0.37 ppm.; CO, 16 ppm. and $CO_2,$ 0.038%. Generally, the concentrations of Pb, $NO_2, NO, CO\; and\; CO_2$ are approximately proportional to the traffic density, vehicles passing per hour.

  • PDF

Co2 Gas Decomposition with Sr Ferrites (스트론튬 페라이트를 이용한 CO2 가스 분해)

  • Shin, Hyun-Chang;Kim, Chul;Choi, Jung-Chul;Tsuji, Masamichi;choi, Seung-Chul
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.137-142
    • /
    • 1999
  • 지구 온난화 현상의 주된 원인인 CO2 가스의 분해를 위해, 스트론튬 페라이트를 이용한 CO2 가스 분해 반응에 대해 연구하였다. CO2 가스 분해를 위한 반응 매체로 스피넬형 조성과 마그네토프롬바이트형 조성의 스트론튬 페라이트 미세분말을 공침법으로 제조한 후, H2 가스로 환원시켜 산소부족형 스트론튬 페라이트 분말을 제조하였다. 이 산소부족형 스트론튬 페라이트 분말은 CO2 가스를 환원, 분해시키면서 산화된다. 이러한 원리를 이용한 CO2 분해 반응에서 스피넬형 조성 스트론튬 페라이트 분말이 마그네토프롬바이트형 조성 분말 보다 빠르게 많은 양의 CO2 가스를 분해 시켰다. 페라이트 중의 스트론튬이 산화·환원 반응을 촉진시키는 것을 관찰할 수 있었다.

  • PDF

Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field (논물 담수심이 온난화 가스 배출에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Jong-Gu;Park, Chan-Won;Shin, Yong-Kwang;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.150-156
    • /
    • 2005
  • The increasing emission of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. This study was conducted to investigate greenhouse gas emission with irrigation water depth in paddy field. Area of each experiment plot is $70m^2$, Three treatments with three replications were carried out in this experiment, which was laid out as randomized complete block design. The treatments of irrigation water were maximum field water capacity and 4 and 8 cm depth. The application rate of fresh rice straw was $8,000kg\;ha^{-1}$ in combination with chemical fertilizers ($110kg\;N\;ha^{-1}$, $45kg\;P_2O_5\;ha^{-1}$ and $57kg\;K_2O\;ha^{-1}$). The $CH_4$ emission was highest at 32 days after rice transplanting with rice straw treatment. The $CH_4$ emission in the plot of maximum field water capacity was lower compared with 4 and 8 cm of irrigation depth. $CH_4$ and $N_2O$ emission under different water depth in the paddy field were 30 and $1.52kg\;ha^{-1}$ at 8 cm depth, 281 and $1.71kg\;ha^{-1}$ at 4 cm depth, and 219 and $2.01kg\;ha^{-1}$ at water saturated condition. The total emission of greenhouse gases equivalent to $CO_2$ emission with rice straw application were $6,939kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $6,431kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $5,222kg\;CO_2\;ha^{-1}$ at water saturated condition. The GWPs without rice straw application were $4,449kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $3,702kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $4,579kg\;CO_2\;ha^{-1}$ at water saturated condition.

Effect of Fcrromagnetic Layer and Magnetoresistance Behavior of Co-Evaporated Ag-CoFe Nano-Granular Alloy Films (Ag - CoFe 합금박막의 자기저항 및 강자성 상하지층의 효과)

  • 김용혁;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.308-313
    • /
    • 1997
  • The magnetoresistance (MR) and the saturation field behavior of the CoFe-Ag nano granular films as a function of the ferromagnetic underlayer and overlayer materials were investigated. The maximum MR ratio of 25.7 % and the saturation field of 2.1 kOe in the as-deposited 3000 $\AA$ $(Co_{92}Fe_8)_{31}Ag_{69}$ single alloy films at room temperature were obtained. The MR ratio and the saturation field of the 100 $\AA$ alloy film were 1.2 % and 5.2 kOe, respectively. Those of the sandwiched alloy films of 200 $\AA$ thick with the Fe under and overlayer of 100 $\AA$ were 11 % and 1.8 kOe respectively. The reduction of saturation field in the sandwiched alloy films is due to the exchange coupling between the ferromagnetic layers and the alloy layer. Among the Fe and FeNi, the more effective materials to reduce the saturation field of the sandwiched alloy films was Fe.

  • PDF

Molecular Switching Coordination Polymers. 4.4'-Chalcogenobispyridine Bridged Cobalt Benzoquinone Complexes

  • 조두환;정종화;여환진;손윤수;정옥상
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.504-507
    • /
    • 1995
  • The reaction of Co2(CO)8 with 3,6-di-tert-butyl-1,2-benzoquinone in the presence of the respective 4,4'-chalcogenobispyridine results in the coordination polymers of [CoⅢ(4,4'-X(Py)2)(DBSQ)(DBCat)]n (X=S, Se, Te; Py=pyridine; DBSQ=3,6-di-tert-butylsemiquinone; DBCat=3,6-di-tert-butylcatechol). The title compounds undergo an intramolecular Cat → Co electron transfer, and thus change toward the [CoⅡ(4,4'-X(Py)2)(DBSQ)2]n at elevated temperature. The temperature-switching properties of the compounds directly depend upon the electronegativity of the chalcogen atom of the 4,4'-chalcogenobispyridine coligands. The spectroscopic data disclose that the properties of [CoⅢ(4,4'-S(Py)2)(DBSQ)(DBCat)]n and [CoⅢ(4,4'-Se(Py)2)(DBSQ)(DBCat)]n are similar each other in contrast to those of [CoⅢ(4,4'-Te(Py)2)(DBSQ)(DBCat)]n.

Growth Response and $CO_2$ Biomass of Chinese Cabbage and Radish under High Temperature and $CO_2$ Concentration (고온과 고농도 $CO_2$ 조건에서 배추와 무의 생육 반응 및 탄소 고정량)

  • Lee, Ji-Weon;Kim, Seung-Yu;Jang, Yoon-Ah;Moon, Ji-Hye;Lee, Woo-Moon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.364-368
    • /
    • 2006
  • This experiment was carried out to figure out the $CO_2$ biomass and the growth response of Chinese cabbage and radish grown under the condition of high temperature and high $CO_2$ concentration to provide the information for the coming climatic change. Chinese cabbage and radish were cultivated in spring and autumn seasons under 4 treatments, 'ambient temp.+ambient $CO_2$ conc.', 'ambient temp.+elevated $CO_2$ conc.', 'elevated temp.+ ambient $CO_2$ conc.', and 'elevated temp. +elevated $CO_2$ conc.'. The 'elevated temp,' plot was maintained at 5 higher than 'ambient temp. (outside temperature)'and the 'elevated $CO_2$ cone.' plot was done in 650 ppm $CO_2$. The growth of spring-sown Chinese cabbage was worse than autumn-sown one, and was affected more by high temperature than high $CO_2$. concentration. The $CO_2$ biomass of Chinese cabbage was lower as 25.1-39.1 g/plant in spring-sown one than 54.8-63.4 g/plant of autumn-sown one. Daily $CO_2$2 fixation ability was not significantly different between spring- and autumn-sown Chinese cabbage as 1.9-2.9, 2.7-3.1 kg/10a/day, respectively. The $CO_2$ biomass of radish were 87.4-104.6 /plant in spring-sown one and 51.3$\sim$76.4 g/plant in autumn-sown one. Daily $CO_2$ fixation ability of radish were 6.2-10.1 kg/10a/day in spring-sown one and 4.6-6.9 kg/10a/day in autumn-sown one.