• Title/Summary/Keyword: $CoAl_2O_4$

Search Result 634, Processing Time 0.031 seconds

Geochemical Characteristics on Geological Groups of Stream Sediment in the Boseong-Hwasun Area, Korea (보성-화순지역 하상퇴적물에 대한 지질집단별 지구화학적 특성)

  • Park, Young-Seog;Kim, Jong-Kyun
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.707-718
    • /
    • 2011
  • We study the natural background and geochemical characteristics on geological groups of stream sediment in the Boseong-Hwasun area. We collected 186ea stream sediment samples along the primary channels and dried them naturally in laboratory. The contents of major, trace and rare earth elements were determined by XRF, ICP-AES and NAA analysis methods. In order to know the natural background and geochemical characteristics of geological groups, we classified the studied area into granitic gneiss (GGn) area and porphyroblastic gneiss (PGn) area. The contents range of major elements for GGn area is $SiO_2$ 45.5-73.09 wt.%, $Al_2O_3$ 12-20.76 wt.%, $Fe_2O_3$(T) 3.72-8.85 wt.%, $K_2O$ 2.38-4.2 wt.%, MgO 0.75-2.77 wt.%, $Na_2O$ 0.78-1.88 wt.%, CaO 0.27-2.1 wt.%, $TiO_2$ 0.56-1.72 wt.%, $P_2O_5$ 0.06-0.73 wt.% and MnO 0.03-0.95 wt.%, and for PGn area it is $SiO_2$ 43.74-70.71 wt.%, $Al_2O_3$ 11.54-25.05 wt.%, $Fe_2O_3$(T) 3.44-13.46 wt.%, $K_2O$ 2.08-3.86 wt.%, MgO 0.65-2.99 wt.%, $Na_2O$ 0.63-1.7 wt.%, CaO 0.35-2.07 wt.%, $TiO_2$ 0.68-4.17 wt.%, $P_2O_5$ 0.1-0.31 wt.% and MnO 0.07-0.33 wt.%. The contents range of hazard elements for GGn area is Cr 41.7-242 ppm, Co 7.6-25.1 ppm, Ni 12-61 ppm, Cu 10-47 ppm, Zn 48.5-412 ppm, Pb 17-215 ppm, and for PGn area, it is Cr 29.6-454 ppm, Co 5.9-53.7 ppm, Ni 8.7-287 ppm, Cu 6.4-134 ppm, Zn 43.6-370 ppm, Pb 15-37 ppm area. There is a good correlation between Cr and MgO and Co among $Al_2O_3$, $Fe_2O_3$(T), MgO and Ni among $Fe_2O_3$(T), CaO, MgO whereas Cu, Zn and Pb have a low correlation for major elements in GGn area. Generally Cr, Co, Ni, and Cu have a good correlation with major elements, but a low correlation with Zn and Pb in PGn area.

Catalytic Combustion of Methane over $AMnAl_{11}O_{19}$(A=La, Sr, Ba) and $CeO_2/LaAMnAl_{11}O_{19}$ ($AMnAl_{11}O_{19}$(A=La, Sr, Ba) 및 $CeO_2/LaAMnAl_{11}O_{19}$를 이용한 메탄의 촉매 연소)

  • Kim, Seongmin;Lee, Joon Yeob;Cho, In-Ho;Lee, Dae-Won;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.633-638
    • /
    • 2011
  • Mn substituted La, Sr or Ba-hexaaluminate were prepared by $(NH_4)_2CO_3$ co-precipitate method and calcined at $1,200^{\circ}C$ for 5 h. Catalysts were characterized by X-ray diffraction and $N_2$ physisorption and scanning electron microscope (SEM). Compared to $SrMnAl_{11}O_{19}$ and $BaMnAl_{11}O_{19}$, $LaMnAl_{11}O_{19}$ in which La located at mirror plane showed better crystallinity and high surface area, 13 $m^2/g$. $LaMnAl_{11}O_{19}$ revealed well developed plate-like structure which is characteristic structure of hexaaluminate. The catalytic activity of methane combustion increased in the following order: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$ and was dependent on surface area of catalysts. 60 wt% $CeO_2/LaMnAl_{11}O_{19}$ calcined at $700^{\circ}C$ showed enhanced methane activity and methane was oxidized completely at low temperature ($700^{\circ}C$). It was confirmed that addition of ceria seems to be effective for the low and middle temperature combustion of methane. But, after calcination at high temperature of $1,200^{\circ}C$, it lost the promoting effect of ceria due to increase of ceria particle size and it had a limit to applying to the high temperature catalytic combustion.

Autothermal Reforming Reaction of Methane using Ni-Ru/$Al_2O_3$-MgO Metallic Monolith Catalysts (Ni-Ru/$Al_2O_3$-MgO 금속 모노리스 촉매체를 이용한 메탄의 자열 개질반응)

  • Lee, Chang-Ho;Lee, Tae-Jun;Shin, Jang-Sik;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2011
  • The autothermal reforming reaction of methane was investigated to produce hyd rogen with Ni/$CeO_2-ZrO_2$, Ni/$Al_2O_3$-MgO and Ni-Ru/$Al_2O_3$-MgO catalysts. Honeycomb metalli c monolith was applied in order to obtain high catalytic activity and stability in autothermal r eforming. The catalysts were characterized by XRD, BET and SEM. The influence of various catalysts on hydrogen production was studied for the feed ratio($O_2/CH_4$, $H_2O/CH_4$). The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. Th e reactor temperature increased as the reaction shifted from endothermic to exothermic reactio n with increasing $O_2/CH_4$ ratio. Among the catalysts used in the experiment, the Ni-Ru/$Al_2O_3$-MgO catalyst showed the highest activity. The 60% of $CH_4$ conversion was obtained, and th e reactor temperature was maintained $600^{\circ}C$ at the condition of GHSV=$10000h^{-1}$ and feed ratio S/C/O=0.5/1/0.5.

Distribution Behavior of Ni between CaO-SiO2-Al2O3-MgO Slag and Cu-Ni Alloy (CaO-SiO2-Al2O3-MgO 슬래그와 Cu-Ni합금 사이의 Ni 분배거동)

  • Han, Bo-Ram;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • To obtain the fundamental information on the dissolution of nickel into the slag in the pyrometallurgical processes for treatment of wasted PCB, the distribution ratios of nickel between CaO-$SiO_2-Al_2O_3$-MgO slag and copper-5 wt%Ni alloy were measured at 1623 K to 1823 K under a controlled $CO_2$-CO atmosphere. The distribution ratio of Ni increased linearly with increasing oxygen partial pressure. Therefore, the dissolution reaction of nickel into the slags could be described by the following equation; $$Ni(l)_{metal}+\frac{1}{2}O_2(g)NiO(l)_{slag}$$ The distribution ratio of Ni increased linearly with increasing content of basic oxides(CaO and MgO) in slag. However, the distribution ratio of Ni decreased linearly with increasing temperature. From these results, the empirical equation of distribution ratio of Ni was obtained by the following equation from the analysis of experimental conditions by multiple regression. $${\log}L_{Ni}=0.4000{\log}P_{O2}-5.1{\times}10^{-4}T+0.3375\(\frac{X_{CaO}+X_{MgO}}{X_{SiO2}}\)$$

Morphology of Carbon Nanotubes Prepared by Methane Plasma CVD (메탄 플라즈마 CVD법으로 합성한 탄소나노튜브의 구조적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Park, Hong-Soo;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.289-299
    • /
    • 2004
  • Multi-walled carbon nanotubes (CNTs) were prepared by microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts and methane precursor. The maximum yield (10.3 %) of CNTs was obtained using a methane-hydrogen-nitrogen mixture with volume ratio of 1:1:2 at 1000 W of microwave power. As the microwave power increased up to 1000 W, the deposition yield of CNTs raised from 4.1 % to 10. 3 %. However, the prepared CNTs at 800 W showed the more crystalline structure than those prepared at 1000 W. The prepared CNTs over different binary catalysts had various structural conformations such as aligned cylinder, bamboo, and nanofibers. The Id/Ig value of CNTs over$Fe-Fe/Al_2O_3, $Co-Co/Al_2O_3, and $Co-Cu/Al_2O_3 were in the range of 0.89${\sim}$0.93. Among the various binary catalysts used, $Fe-Co./Al_2O_3 showed the highest yield.

Photoluminescent properties of red phosphor (Y,Gd)$_2$O$_3$: Eu for plasma display panel synthesized by homogeneous precipitation method (균일침전법으로 제조한 플라즈마 디스플레이용 적색 형광체 (Y,Gd)$_2$O$_3$: Eu의 발광특성)

  • 김유혁;김좌연
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.400-406
    • /
    • 2000
  • The fired Precursor (Y,Gd,Eu)(OH)$CO_3$.$H_2O$$900^{\circ}C$ was used to synthesize the red phosphor $(Y,Gd)_2O_3$: Eu for plasma display panel. Rounded and ~l $\mu\textrm{m}$ diameter phosphor $(Y,Gd)_2O_3$: Eu can be obtained by the reaction of aformentioned powder with a small amount addition of flux at $1350^{\circ}C$ for 2 hours. Emission spectra of these phosphors were measured under excitation wavelength at 254 nm and 147 nm and the optimum concentrations of activator ion were determined at around 15 mo1e % and 10 mole % under these conditions, respectively. $BaCO_3$flux had the best property in emission intensity among the prepared $BaCO_3AlF_3$and $Li_3PO_4$phosphors. The properties of optimized sample were improved in terms of relative luminance and color coordinate comparing with commercial phosphor such as $Y_2O_3$: Eu.

  • PDF

The Thermal Shock Behaviors of Y-TZP/Y-TZP-Al2O3 Composites having Dual Microstructure (이중조직을 갖는 Y-TZP/Y-TZP-$Al_2O_3$ 복합체의 열충격 거동)

  • Hwang, K.H.;Kim, E.H.;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 1992
  • Duplex composites such as Y-TZP/Y-TZP-20 wt.% Al2O3 and Y-TZP/Y-TZP- 40 wt.% Al2O3 were made by mixing the sieve-shaked granules followed by isostatic pressing and sintering at 150$0^{\circ}C$ for 1 hour. So Y-TZP became matrix region and Y-TZP-20 wt.% Al2O3 or Y-TZP-40 wt.% Al2O3 became dispersed regions. In these composites, propagating cracks due to thermal shock always run into the dispersed region because these regions act as compressive zone due to low thermal expansion than matrix region. So duplexes having dispersed regions of Y-TZP-40 wt.% Al2O3 showed higher retained strength after thermal shock than matrix only composites because crack propagations were stopped more or less in the dispersed region. But when crack propagations were much more easy than matrix like Y-TZP-20 wt.% Al2O3 region, retained strength was decreased than the matrix only composites despite of the low initial strength.

  • PDF

A Study on the Structure and Thermal Property of $Co^{2+}$-Exchanged Zeolite A

  • Jong-Yul Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.265-270
    • /
    • 1991
  • Theoretical calculations on the stabilization energies of framework atoms in hydrolyses Co(Ⅱ )-exchanged zeolite A were made using some potential energy functions and optimization program. The protons which are produced by hydrolysis of $[Co(H_2O)_n]^{2+}$ ion in large cavity showed a tendency to attack the framework oxygen atom O(1) preferentially, and the oxygen atom O(4) within OH- ion was coordinated at Al atom. The weakness of bonds between T(Si, Al) and oxygen by attack of proton and too large coordination number around small aluminum atom will make the framework of Co(Ⅱ)-exchanged zeolite A more unstable. The stabilization energy of $Co_4Na_4$-A framework (- 361.57 kcal/mol) was less than that of thermally stable zeolite A($Na_{12-}$A: - 419.68 kcal/mol) and greater than that of extremely unstable Ba(Ⅱ)-exchanged zeolite A($Ba_{6-}$A: - 324.01 kcal/mol). All the data of powder X-ray diffraction, infrared and Raman spectroscopy of Co(Ⅱ)-exchanged zeolite A showed the evidence of instability of its framework in agreement with the theoretical calculation. Three different groups of water molecules are found in hydrated Co(Ⅱ )-exchanged zeolite A; W(Ⅰ) group of water molecules having only hydrogen-bonds, W(Ⅱ) group water coordinated to $Na^+$ ion, ans W(Ⅲ) group water coordinated to Co(Ⅱ) ion. The averaged interaction energy of each water group shows the decreasing order of W(Ⅲ)>W(Ⅱ)>W(Ⅰ).

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Phase Transformation and Luminescent Properties of Ca1-xSrxAl2O4:Eu2+ Phosphors ([Ca1-xSrxAl2O4:Eu2+] 형광체의 상전이 및 발광특성에 관한 연구)

  • Park, Yun-Jin;Song, Hyun-Don;Jung, Sang-Hyun;Lee, Jee-Hee;Hwang, Min-Ha;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The phase transformations and luminescent properties of Eu-doped $Ca_{1-x}Sr_xAl_2O_4$ phosphors were investigated. $Ca_{1-x}Sr_xAl_2O_4:Eu^{2+}$ phosphors were synthesized by a solid-state reaction with a flux, $H_3BO_3$. A phase transformation from monoclinic $CaAl_2O_4$ to monoclinic $SrAl_2O_4$ was observed as the x values increased. A high-temperature hexagonal phase of $SrAl_2O_4$ was formed during this transformation as an intermediate phase under an $H_2$ atmosphere due to oxygen vacancies; this did not occur in an air atmosphere. Accordingly, the emission spectra shifted from a blue region to a green region as x increased.