• Title/Summary/Keyword: $Ce_{0.8}Gd_{0.2}O_{1.9}$

Search Result 25, Processing Time 0.026 seconds

Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte ($Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성)

  • 윤희성;노의범;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF

Preparation of Ce0.8Gd0.2O1.9 Powder by Milling of CeO2 Slurry and Oxalate Precipitation (CeO2 슬러리 분쇄와 옥살산 침전을 이용한 Ce0.8Gd0.2O1.9 분말의 합성)

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.183-188
    • /
    • 2010
  • $Ce_{0.8}Gd_{0.2}O_{1.9}$(GDC20) powder was synthesized by milling of $CeO_2$ slurry and Gd oxalate precipitation. The mixture of $CeO_2$ powder and Gd precipitates calcined at $600^{\circ}C$ for 2 h showed the particle size distribution similar to that of $CeO_2$ powder, which had been milled during the synthesis process. Attrition milling of the calcined powder with an average particle size of $0.36\;{\mu}m$ for 2 h resulted in a decrease in the particle size to $0.24\;{\mu}m$. Although the milled powder consisted of small particles(<$1\;{\mu}m$), a small amount of fine platy $Gd_2O_3$ particles, which had been survived in the milling process, was observed. Sintering of the powder compacts for 4 h showed relative densities of 80.7% at $1300^{\circ}C$ and 97% at $1400^{\circ}C$, respectively. Densification was found to almost complete at $1500^{\circ}C$, resulting in a dense and homogeneous microstructure with a relative density of 99.5%.

Effects of Strontium Gallate Additions on Sintering Behavior and Electrical Conductivity of Ce0.8Gd0.2O2-δ Ceramics (Strontium Gallate의 첨가에 따른 Ce0.8Gd0.2O2-δ 세라믹스의 소결거동과 전기전도도 특성)

  • Park Jin-Hee;Choi Kwang-Hoon;Ryu Bong-Ki;Lee Joo-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.145-152
    • /
    • 2006
  • The densification behavior and electrical conductivity of $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics were investigated with the strontium gallate concentration ranging from 0 to $5\;mol\%$. Both the sintered density and grain size were found to increase rapidly up to $0.5\;mol\%$ $Sr_2Ga_2O_5$, and then to decrease with further addition. Dense $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics with $97\%$ of the theoretical density could be obtained for $0.5\;mol\%$ $Sr_2Ga_2O_5$-added specimen sintered at $1250^{\circ}C$ for 5 h, whereas pure $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics needed to be sintered at $1550^{\circ}C$ in order to obtain an equivalent theoretical density, Electrical conductivity was measured as a function of dopant content, over the temperature range of $350\;-\;600^{\circ}C$ in air. Total conductivity of $0.5\;mol\%$ $Sr_2Ga_2O_5$-added specimen showed the maximum conductivity of $2.37{\times}10^{-2}{{\Omega}-1}{\cdot}cm^{-1}$ at $500^{\circ}C$, The addition of strontium gallate was found to promote the sintering properties and electrical conductivities of $Gd_2O_3$-doped $CeO_2$.

Effects of Fe2O3 Additions on Sintering Behavior and Electrical Property of Ce0.8Gd0.2O1.9 Ceramics (Ce0.8Gd0.2O1.9 세라믹스의 소결거동과 전기적 특성에 미치는 Fe2O3의 첨가효과)

  • Choi, Kwang-Hoon;Lee, Joo-Sin;Choi, Yong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.526-531
    • /
    • 2007
  • The sintering behavior and electrical property of $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics were investigated with the iron oxide concentration ranging from 0 to 5 mol%. Both the sintered density and grain size were found to increase up to 2 mol% $Fe_2O_3$, and then to decrease with further additions. At a higher $Fe_2O_3$ content above 3 mol%, grain size decreased by a pinning effect induced by different shape grains. The electrical conductivity was also increased with increasing $Fe_2O_3$ content up to 2 mol%. Total conductivity of 2 mol% $Fe_2O_3-added$ specimen showed the maximum conductivity of $2{\times}10^{-2}{\Omega}{\cdot}cm^{-1}$ at $500^{\circ}C$. The addition of $Fe_2O_3$ was found to promote the sintering properties and electrical conductivities of $Gd_2O_3-dope\;CeO_2$.

Preparation of Ce0.8Gd0.2O1.9 Powder Using CeO2 Powder and Gd Precipitation and Effect of CoO doping on Sintering

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.521-526
    • /
    • 2015
  • $Ce_{0.8}Gd_{0.2}O_{1.9}$(GDC20) powder was prepared from a mixture of submicron-sized $CeO_2$ powder and Gd precipitates using ammonium carbonate $((NH_4)_2CO_3)$ as a precipitant. The mixture was calcined at $700^{\circ}C$ for 4 h followed by ball-milling that resulted in the GDC powder with an average particle size of $0.46{\mu}m$. The powder had a very uniform particle size distribution with particle sizes ranging from $0.3{\mu}m$ to $1{\mu}m$. Sintering of undoped GDC samples did not show a relative density of 99.2% until the temperature was increased to $1500^{\circ}C$, whereas GDC samples doped with 5 mol% CoO exhibited a significant densification at lower temperature reaching a relative density of 97.6% at $1100^{\circ}C$ and of 98.8% at $1200^{\circ}C$.

Synthesis and Characterization of $La_{0.5}$$Sr_{0.5}$$MnO_3$-${Ce_{0.8}}{Gd_{0.2}}{O_{1.9}}$ Cathode for Solid Oxide Fuel Cell by Glycine-Nitrate Process (Glycine-Nitrate Process를 이용한 $La_{0.5}$$Sr_{0.5}$$MnO_3$-${Ce_{0.8}}{Gd_{0.2}}{O_{1.9}}$ 환원극 제조 및 특성평가)

  • 구본석;윤희성;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • 고체산화물 연료전지의 삼상 계면의 길이를 증가시키기 위해 Glycine-Nitrate Process(GNP)를 이용하여 환원극 재료인 L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM)과 전해질 재료인 C $e_{0.8}$G $d_{0.2}$ $O_{1.9}$(CGO)를 합성하였다. 적당한 합성조건을 찾기 위하여 글리신의 양을 달리하여 분말을 합성한 결과 LSM의 경우 글리신이 양이온 몰수의 2배일 때 perovskite상이 얻어졌으며 비표면적은 34$m^2$/g 이었다. 합성된 LSM과 CGO 분말을 50:50 wt%로 혼합하여 제작된 환원극을 screen-printing법으로 코팅한 후 각각 1200, 1300, 1350 및 140$0^{\circ}C$에서 4시간 동안 소결한 후 80$0^{\circ}C$에서 power density와 양극과전압 등을 측정한 결과 130$0^{\circ}C$에서 소결한 단위전지에서 최대 309 mW/$ extrm{cm}^2$의 power density를 얻을 수 있었다.다.

  • PDF

Characterization of (La,Sr))$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ Interface with Citric Acid Contents and Sintering Temperature (시트르산의 양과 소결온도에 따른 (La,Sr)$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ 계면특성)

  • 윤일영;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 1998
  • G $d_{0.2}$C $e_{0.8}$ $O_{1.9}$(CGO) for electrolyte and L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM50) for cathode in Solid Oxide Fuel Cells(SOFC) were synthesized by citrate process. Specimens were prepared with sintering temperatures at 110$0^{\circ}C$, 120$0^{\circ}C$ and 130$0^{\circ}C$, which were fabricated by slurry coating with citric acid contents. Interfacial resistance was measured between cathode and electrolyte using AC-impedance analyzer. With various citric acid content, the degree of agglomeration for the initial particles changed. Also sintering temperature changed the particle size and the degree of densification of cathode. Factors affecting the interfacial resistance were adherent degree of the electrolyte and cathode, distribution of TPB(three phase boundaries, TPB i.e., electrolyte/electrode/gas phase area) and porosity of cathode. By increasing the sintering temperature, particle size and densification of the cathode were increased. And then, TPB area which occurs catalytic reaction was reduced and so interfacial resistance was increased.sed.sed.d.

  • PDF

Preparation and Sintering Characteristics of Ce0.8Gd0.2O1.9 Powder by Ammonium Carbonate Co-precipitation (탄산암모늄 공침을 이용한 Ce0.8Gd0.2O1.9 분말의 합성 및 소결특성)

  • Yoo, Young-Chang;Chung, Byung-Joo;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.118-123
    • /
    • 2012
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized from Ce and Gd nitrate solutions using ammonium carbonate($(NH_4)_2CO_3$) as a precipitant. Attrition-milling of the powder, which had been calcined at $700^{\circ}C$ for 4 h, decreased an average particle size of 2.2 ${\mu}m$ to 0.5 ${\mu}m$. The milled powder consisted of nano-sized spherical primary particles. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 80% at 1000 $^{\circ}C$ and 96.5% at $1200^{\circ}C$, respectively. Densification was found to almost complete at $1300^{\circ}C$, resulting in a dense and homogeneous microstructure with a relative density of 99.5%. The grains of ~0.2 ${\mu}m$ in size at $1200^{\circ}C$ grew to ~1 ${\mu}m$ in size at $1300^{\circ}C$ as a result of a rapid grain growth.

Synthesis of Garnet in the Ca-Ce-Gd-Zr-Fe-O System (Ca-Gd-Ce-Zr-Fe-O계에서의 석류석 합성 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook;Yudintsev S.V.
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.187-196
    • /
    • 2005
  • Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.

Synthesis and Characterization of Gd1-xSrxMnO3 as Cathodic Material for Solid Oxide Fuel Cell (고체산화물 연료전지의 양극재료로서 Gd1-xSrxMnO3의 합성 및 특성평가)

  • 윤희성;최승우;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • Gd1-xSrxMnO3(0$\leq$X$\leq$0.6) as the cathode for solid oxide fuel cell was synthesized by citrate process and studied for its crystal structure, electrical conductivity, thermal expansion coefficient (TEC), and investigated reactivity with 8 mol% yttria stabilized zirconia(8YSZ) or Ce0.8Gd0.2O1.9 (CGO). The crystal structure of Gd1-xSrxMnO3 changed from orthorhombic (0$\leq$X$\leq$0.3) through cubic (0.4$\leq$X$\leq$0.5) to tetragonal structure (X=0.6). When Sr contents was increased, the electrical conductivity of Gd1-xSrxMnO3 was inthose of La1-xSrxMnO3, 8YSZ and CGO if Sr content was above 30mol%. TEC of Gd1-xSrxMnO3 was increased with Sr content. After heat treatment at 1300$^{\circ}C$ for 48 hours, reaction product of Gd1-xSrxMnO3 and 8YSZ was SrZrO3. However CGO had no reaction product with Gd1-xSrxMnO3.

  • PDF