• Title/Summary/Keyword: $CeO_2$ powder

Search Result 99, Processing Time 0.038 seconds

Photoluminescence Property of Lu2Si2O7:Ce3+ Powder for Scintillator

  • Kim, Kyung-Nam;Cao, Guozhong
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.212-215
    • /
    • 2016
  • In this paper, cerium doped lutetium pyrosilicate (LPS) powders with cerium content (0.05 and 0.07 mol%) were prepared by sol-gel process. The formation of lutetium pyrosilicate (LPS) phase was confirmed by XRD analysis for the powders heated at $1,200^{\circ}C$; in these powders, a single phase of $Lu_2Si_2O_7$ (LPS) was observed. Cerium doped lutetium pyrosilicate (LPS) powder was agglomerated and constituted of small spherical particles with diameters of about 300 nm. The photoluminescence spectra of the $Lu_2Si_2O_7:Ce^{3+}$ powders showed the characteristic of excitation and there was an emission spectrum for $Ce^{3+}$ in the host of $Lu_2Si_2O_7$. The emission spectrum shows a broad band in the range of 350-525 nm; the broad wavelength on the right side of the spectra should be ascribed to the same 5d-4f transitions of $Ce^{3+}$, as in the case of cerium doped $Lu_2Si_2O_7$ single crystals.

Improved Microstructural Homogeneity of Ni-BCY Cermets Membrane via High-Energy Milling (고에너지 밀링을 통한 Ni-BaCe0.9Y0.1O3-δ 서멧 멤브레인의 미세구조 균질성 향상)

  • Kim, Hyejin;Ahn, Kiyong;Kim, Boyoung;Lee, Jongheun;Chung, Yong-Chae;Kim, Hae-Ryoung;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Hybridization of dense ceramic membranes for hydrogen separation with an electronically conductive metallic phase is normally utilized to enhance the hydrogen permeation flux and thereby to increase the production efficiency of hydrogen. In this study, we developed a nickel and proton conducting oxide ($BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$: BCY) based cermet (ceramic-metal composites) membrane. Focused on the general criteria in that the hydrogen permeation properties of a cermet membrane depend on its microstructural features, such as the grain size and the homogeneity of the mix, we tried to optimize the microstructure of Ni-BCY cermets by controlling the fabrication condition. The Ni-BCY composite powder was synthesized via a solid-state reaction using $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$, $BaCeO_3$, $CeO_2$ and $Y_2O_3$ as a starting material. To optimize the mixing scale and homogeneity of the composite powder, we employed a high-energy milling process. With this high-energy milled composite powder, we could fabricate a fine-grained dense membrane with an excellent level of mixing homogeneity. This controlled Ni-BCY cermet membrane showed higher hydrogen permeability compared to uncontrolled Ni-BCY cermets created with a conventionally ball-milled composite powder.

Microstructural property and catalytic activity of nano-sized MnOx-CeO2/TiO2 for NH3-SCR (선택적 촉매 환원법 재료로서 나노 사이즈 MnOx-CeO2/TiO2 촉매에 대한 미세 구조적 특성과 촉매활성 평가)

  • Hwang, Sungchul;Jo, Seung-hyeon;Shin, Min-Chul;Cha, Jinseon;Lee, Inwon;Park, Hyun;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.115-120
    • /
    • 2016
  • $CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.

Suppression of the surface nucleation of YBa$_2$Cu$_3$O$_7-y$ by CeO$_2$ coating of the top-seeded melt processed YBCO superconductors

  • Kim, Ho-Jin;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • The effect of CeO$_2$ coating on the surface nucleation of the top-seeded melt-growth processed YBCO superconductors was studied. It was effective that the coating of Y123 compact surfaces by CeO$_2$ powder suppressed the undesirable subsidiary YBa$_2$Cu$_3$O$_{7-y}$ (Y123) nucleation during melt processing. BaCeO$_3$ was formed in the CeO$_2$-coated layers, which might cause a CuO-excessive liquid at the partial melt stage of $Y_2$BaCuO$_{5}$(Y211) plus liquid, and thus the Y123 nucleation at the YBCO compact surfaces could be suppressed during the melt growth of Y123 grain. In addition, the CeO$_2$ refined the Y211 particles near the compact / coating interface. While the levitation forces of the top surfaces with and without CeO$_2$ coating were similar to each other, the levitation force of the interior of the CeO$_2$ coated sample was higher than that of the interior of the sample without CeO$_2$ coating, which was attributed to the suppression of subsidiary Y123 nucleation at the compact walls.s.s.

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (II) Properties of Cordierite Glass-Ceramics Containing CeO2 (저온소결 세라믹기판용 Cordierite계 결정화유리의 합성 및 특성조사에 관한 연구;(II) $CeO_2$를 첨가한 Cordierite계 결정화유리의 특성)

  • 이근헌;김병호;임대순;정재현
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.827-835
    • /
    • 1992
  • The effects of CeO2 on the properties of cordierite-based glass-ceramics and its applicability to low firing temperature substrate were examined. Glass-ceramics were prepared by sintering the glass powder compacts at 900~100$0^{\circ}C$ for 3 h. Density, bending strength, dielectric constant and thermal expansion coefficient of the glass-ceramics were measured as functions of CeO2 contents and sintering temperatures. By adding CeO2, dense glass-ceramics were obtained below 100$0^{\circ}C$. dielectric constant and bending strength were more dependent on the porosity of glass-ceramics containing 5 wt% CeO2, sintered at 100$0^{\circ}C$ for 3 h, were as follows; relative density is 95.3%, bending strength is 178$\pm$11 MPa, dielectric constant is 4.98$\pm$0.20 (at 1 MHz) and thermal expansion coefficient is 33.7$\times$10-7/$^{\circ}C$. Therefore, the glass-ceramics containing 5 wt% CeO2 appeared to be suitable for low firing temperature substrate of electronic devices.

  • PDF

A Study on the Luminescence Properties of LiGd9(SiO4)6O2:Ce3+ (LiGd9(SiO4)6O2:Ce3+ 형광 특성 연구)

  • Jin, Seongjin
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • $LiGd_9(SiO_4)_6O_2:Ce^{3+}$ phosphors were synthesized by solid-state reaction method. The structural characteristic was investigated by X-ray powder diffraction analysis. The emission and excitation spectra of the $Ce^{3+}$ ions doped $LiGd_9(SiO_4)_6O_2$ phosphors were obtained under the UV excitation. The emission spectra of $LiGd_9(SiO_4)_6O_2:Ce^{3+}$ shows the band at 410 nm corresponding to the $^2F_{5/2}$ and $^2F_{7/2}$ states of $Ce^{3+}$. The red shift of $Ce^{3+}$ emission is found as the $Ce^{3+}$ concentration increases, which could be explained by the change in crystal-field symmetry and strength with increasing $Ce^{3+}$ concentration. Fluorescence decay time of $Ce^{3+}$ was about 20 ns. When the concentration of $Ce^{3+}$ increases life time was slightly reduced.

Synthesis of YAG:Ce3+ Phosphor Powders by Polymer Solution Route and Alumina Seed Application (폴리머용액법 및 알루미나 seed를 도입한 YAG:Ce3+ 형광체 분말 합성)

  • Kim, Yong-Hyeon;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • $YAG:Ce^{3+}$ phosphor powders were synthesized using a $Al_2O_3$ seed (average particle size: 5 ${\mu}m$) by the polymer solution route. PVA solution was added to the sol precursors consisting of the seed powder and metal nitrate salts for homogeneous mixing in atomic scale. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1400^{\circ}C{\sim}1500^{\circ}C$ in $N_2/H_2$ atmosphere. The final powders were characterized by using XRD, SEM, PSA, PL and PKG test. All synthesized powders were crystallized to YAG phase without intermediate phases of YAM or YAP. The phosphor properties and morphologies of the synthesized powders were strongly dependent on the PVA content. Finally, the synthesized $YAG:Ce^{3+}$ phosphor powder heated at $1500^{\circ}C$, which is prepared from 12:1 PVA content and has an average particle size of 15 ${\mu}m$, showed similar phosphor properties to a commercial phosphor powder.

Synthesis of Lanthanides Doped $CaTiO_3$ Powder by the Combustion Process

  • Jung, Choong-Hwan;Park, Ji-Yeon;Lee, Min-Yong;Oh, Seok-Jin;Kim, Hwan-Young;Hong, Gye-Won
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2000
  • Lanthanides such as La, Gd and Ce have recognized as elements of high level radioactive wastes immobilized by forming solid solution with $CaTiO_3$. For easy forming solid solution between $CaTiO_3$and lanthanides, the combustion synthesis process was applied and the powder characteristics and sinterability were investigated. The proper selection of the type and the composition of fuels are important to get the crystalline solid solution of $CaTiO_3$and lanthanides. When glycine or the mixtures of urea and citric acid with stoichiometric composition was used as a fuel, the solid solution of $CaTiO_3$with $La_2O_3$or $Gd_2O_3$or $CeO_2$was produced very well by the combustion process. The combustion synthesized powder seemed to have a good sinterability with the linear shrinkage of more than 25% up to $1500^{\circ}C$, while that of the solid state reacted powder was less than 10% at the same condition.

  • PDF