• Title/Summary/Keyword: $CeO_2$ powder

Search Result 99, Processing Time 0.022 seconds

Oxygen-Response Ability of Hydrogen-Reduced Nanocrystalline Cerium Oxide

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The potential application of ultrafine cerium oxide (ceria, $CeO_2$) as an oxygen gas sensor has been investigated. Ceria was synthesized by a thermochemical process: first, a precursor powder was prepared by spray drying cerium-nitrate solution. Heat treatment in air was then performed to evaporate the volatile components in the precursor, thereby forming nanostructured $CeO_2$ having a size of approximately 20 nm and specific surface area of 100 $m^2/g$. After sintering with loosely compacted samples, hydrogen-reduction heat treatment was performed at 773K to increase the degree of non-stoichiometry, x, in $CeO_{2-x}$. In this manner, the electrical conductivity and oxygen-response ability could be enhanced by increasing the number of oxygen vacancies. After the hydrogen reduction at 773K, $CeO_{1.5}$ was obtained with nearly the same initial crystalline size and surface. The response time $t_{90}$ measured at room temperature was extremely short at 4 s as compared to 14 s for normally sintered $CeO_2$. We believe that this hydrogen-reduced ceria can perform capably as a high-performance oxygen sensor with good response abilities even at room temperature.

Effect of Metal Oxide on the Superconductivity of YBCO

  • Lee, Sang-Heon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1241-1242
    • /
    • 2006
  • Electromagnetic properties of $CeO_2$ doped and undoped YBaCuO superconductors were evaluated to investigate the effect of pinning center on the magnetization and magnetic shielding. The variation $\DeltaM$ with doping was maximum for 3% doping and decrease with further doping. The magnetic shielding was evaluated by measuring the induced voltage in secondary coil and the voltage initially set to 0.5V, decreased to 0.17V and 0.28V respectively for the undoped and 3% $CeO_2$ doped sample. The much less change in the induced voltage for the 3% doped sample is attributed to the increased flux shielding by shielding vortex current. The $CeO_2$ was converted to fine $BaCeO_3$ particles which were trapped in YBaCuO superconductor during the reaction sintering. The trapped fine particles, $BaCeO_3$ may be acted as a flux pinning center.

  • PDF

Sintering Behavior of Nano-sized Gd2O3-doped CeO2 Powder Prepared by A High Energy Ball Milling (고에너지 볼밀링에 의해 제조된 Gd2O3-doped CeO2 나노분말의 소결 거동에 관한 연구)

  • Ryu, Sung-Soo;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.302-307
    • /
    • 2008
  • $Gd_2O_3$-doped $CeO_2$(GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at $1200^{\circ}C$ of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at $1300^{\circ}C$ for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process.

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(I) : Effect of CeO2 Content on the Mechanical Properties and Fracture Behavior of Ce-TZP (CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(I) : CeO2 함량에 따른 Ce-TZP의 기계적 성질과 파괴거동의 변화)

  • 김문일;박정현;강대석;문성환
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.719-727
    • /
    • 1989
  • By using commercial zirconia powder CeO2-ZrO2 ceramics containing 8~16mol% CeO2 was made by heat treatment at 1350~155$0^{\circ}C$ for 1~10hr. The minimum amount of CeO2 for obtaining complete tetragonal phase was 12mol%, and in the tetragonal phase region fracture toughness of Ce-TZP was decreased with increasing CeO2 content and the maximum value was obtained when 12mol% CeO2 was added. The bending strength goes through maximum at 14mol% CeO2. Fracture mode of Ce-TZP transformed from intergranular to transgranular fracture with increasing CeO2 content, so the morphology of fracture surface of 16mol% Ce-TZP was wholly transgranular and this tendency was independent on grain size. The crystal structure of the 12mol% Ce-TZP was monoclinic with fringes along the grain boundaries which are lying in the particular plane from the TEM observation. The chemical composition of the sintered body was homogeneous as a whole and some amorphism or air pocket was observed at the triple junction.

  • PDF

Preparation and Sintering Characteristics of Ce0.8Gd0.2O1.9 Powder by Ammonium Carbonate Co-precipitation (탄산암모늄 공침을 이용한 Ce0.8Gd0.2O1.9 분말의 합성 및 소결특성)

  • Yoo, Young-Chang;Chung, Byung-Joo;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.118-123
    • /
    • 2012
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized from Ce and Gd nitrate solutions using ammonium carbonate($(NH_4)_2CO_3$) as a precipitant. Attrition-milling of the powder, which had been calcined at $700^{\circ}C$ for 4 h, decreased an average particle size of 2.2 ${\mu}m$ to 0.5 ${\mu}m$. The milled powder consisted of nano-sized spherical primary particles. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 80% at 1000 $^{\circ}C$ and 96.5% at $1200^{\circ}C$, respectively. Densification was found to almost complete at $1300^{\circ}C$, resulting in a dense and homogeneous microstructure with a relative density of 99.5%. The grains of ~0.2 ${\mu}m$ in size at $1200^{\circ}C$ grew to ~1 ${\mu}m$ in size at $1300^{\circ}C$ as a result of a rapid grain growth.

Capsule Free Hot Isostatic Pressing of Ceria-Doped Tetragonal Zirconia Powder Crystallized in Supercritical Methanol

  • Shu Yin;Satoshi Uehida;Yoshinobu Fujishiro;Mamoru Ohmori;Tsugio Sato
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 1999
  • Capsule free hot isostatic pressing (HIPing) of 12 mol% $CeO_2-88 mo% ZrO_2 (12CeO_2-88ZrO_2)$ powder was conducted at 1100~$1200^{\circ}C$ using the powder crystallized in supercritical methanol followed by supercritical drying. Porous $12CeO_2-88ZrO_2$ ceramics with ~35% open porosity, micropore diameter of ~23 nm and a narrow pore size distribution were fabricated by capsule free hot isostatic pressing at $1100^{\circ}C$. The porosity increased with decrease in HIPing temperature and was accompanied by a steady decrease in fracture strength.

  • PDF

Effect of Yttria and Ceria on Mechanical Properties and Oxidation Behaviors of $\alpha$-Sialon Ceramics ($\alpha$-Sialon 세라믹스의 역학적 성질과 산화거동에 미치는 $Y_2O_3$$CeO_2$의 첨가영향)

  • 이은복;이홍림;조덕호;박원철
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.941-948
    • /
    • 1993
  • The powder mixture of Si3N4-AlN-Y2O3, Si3N4-AlN-CeO2 and Si3N4-AlN-Y2O3-CeO2 system was hot-pressed at 175$0^{\circ}C$ for 2h in N2 to prepare $\alpha$-Sialon ceramics. The mechanical property and oxidation behaviour of the prepared $\alpha$-Sialon ceramics were investigated. At 120$0^{\circ}C$, oxidation resistance was best for the Y2O3 added $\alpha$-Sialon ceramics and oxidation rate increased when the amount of CeO2 increased. But when the mixture of Y2O3 and CeO2 added $\alpha$-Sialon ceramics showed a good oxidation resistance. Fracture toughness of (Y2O3+CeO2) added $\alpha$-Sialon ceramics was higher than Y2O3 added $\alpha$-Sialon ceramics.

  • PDF

Synthesis of Lu2.94Ce0.06MgAl3SiO12 phosphor and its photoluminescent properties

  • Lee, Jung-Il;Kim, Tae Wan;Shin, Ji Young;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.121-126
    • /
    • 2015
  • A novel $Ce^{3+}$ doped $Lu_3MgAl_3SiO_{12}$ phosphor ($Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$) was successfully synthesized by a conventional solid-state reaction at $1450^{\circ}C$ for 5 h. The crystal structure of the synthesized phosphor powder was characterized by X-ray diffraction and Rietveld refinement. The prepared phosphor powder showed a broad peak at 550 nm, and the temperature dependence on photoluminescence properties of the prepared $Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$ phosphor was investigated from 300 to 525 K. The activation energy for thermal quenching was determined by Arrhenius fitting. The experimental results clearly indicate that prepared $Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$ phosphor has great potential for a down-conversion yellow phosphor in white light-emitting diodes.