• Title/Summary/Keyword: $Cd^{2+}$ ion

Search Result 306, Processing Time 0.034 seconds

Analysis of the Change of Amino Acids by Cadmium and Polyamine-Treatment in Spring Radish Young Cotyledons and Roots (무우 유식물의 자엽과 뿌리에서 Cadmium 이온과 Polyamine 처리에 의한 아미노산 변화의 분석)

  • Cho, Bong-Heuy;Park, Sun Young
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.135-138
    • /
    • 1998
  • The change of amino acids was analysed with cotyledons and roots of young spring radish by the treatment of $Cd^{2+}$ ion and $Cd^{2+}$ ion plus PA. The concentration of Asp was decreased by the treatment of $Cd^{2+}$ ion, but Ala, Phe, Val, Ile, Typ, Lys and Arg was increased in the cotyledons. The concentration of Lys and Arg was decreased by the treatment of $Cd^{2+}$ ion plus PA at the same time. The concentration of basic amino acids, His, Lys and Arg was increased by the treatment of $Cd^{2+}$ ion, and decreased by the treatment of $Cd^{2+}$ ion and $Cd^{2+}$ ion plus PA in the roots. Only the concentration of Pro was increased by the treatment of $Cd^{2+}$ ion plus PA. This results showed that Pro was induced against stress of PA, and assumed that the change of other amino acids concentration may be relation to the metabolism against stress.

  • PDF

Conceptual Design of Electrical Power System using Li-ion Cell Technology for a Satellite (리튬이온 전지 기술을 채용한 인공위성용 전력계 개념 설계)

  • Shin, Goo-Hwan;Park, Kyung-Hwa;Kim, Hyung-Myung;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • This paper presents the conceptual design of the electrical power system using Li-ion cell technology for a satellite application. Compared to a conventional NiCd cell, a Li-ion cell has a lot of advantages such as an energy density, mass and a volume. Normally, a Li-ion cell has three times than conventional NiCd cells in a capacity such as a cell voltage. The normal voltage of a NiCd cell is around +1.2V and a Li-ion cell could be in +3.6V. However, the handling procedure for a Li-ion cell in charge and discharge might be difficult than a conventional NiCd cell, which means that the charge and discharge of each cell should be monitored and controlled by electrical circuits to prevent an over-charge and over-discharge. Therefore, in this paper we propose the design consideration and the characteristics of a Li-ion cell during charging and discharging battery packs in the point of view of electrical power system.

A Study on the Characteristics of High Energy Nitrogen ion Implanted CdS Thin Films (고에너지 질소 이온 주입된 CdS 박막 특성에 관한 연구)

  • 이재형;홍석주;양계준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.712-718
    • /
    • 2003
  • The effects of nitrogen ion implantation on vacuum evaporated cadmium sulphide (CdS) thin films were investigated by X-ray diffraction, optical transmittance spectra, and Raman scattering studies. The as-deposited CdS films have a hexagonal structure with preferential (0 0 2) orientation. Formation of Cd metallic clusters was observed in ion implanted films from the XRD patterns. The band gap of N+ implanted films decreased, whereas the optical absorption coefficient values increased with the increase of implantation dose. The Raman peak position appeared at 299 cm-1 and the FWHM increased with the ion dose. A decrease in the area of Raman peak of CdS Al(LO) mode is seen on implantation.

Dependence of reaction temperature on the properties of CdS thin films grown by Chemical Bath Deposition (Chemical Bath Deposition으로 성장한 CdS 박막의 반응온도에 대한 특성)

  • Lee, Ga-Yeon;Yu, Hyeon-Min;Lee, Jae-Hyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.805-808
    • /
    • 2010
  • In this paper, CdS thin films, which were widey used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, and effects of temperature of reaction solution on the structural properties were investigated. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And ammonium acetate was used as the buffer solution. The reaction velocity was increased with increasing temerature of reaction solution. For temperature <= $85^{\circ}C$, as increasing temperature of solution, deposition rate of CdS films was increased by ion-by-ion reaction in the substrate surface, and the crystallinity of the films was improved. However, for temperature <= $55^{\circ}C$, deposition rate was decreased resulting from smaller Cd2+ ion, and the grain size was decreased.

  • PDF

Argon and Nitrogen Implantation Effects on the Structural and Optical Properties of Vacuum Evaporated Cadmium Sulphide Thin Films (CdS 박막의 구조적 및 광학적 물성에 미치는 아르곤 및 질소 이온 주입 효과)

  • ;;D. Mangalaraj
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.471-478
    • /
    • 2002
  • Vacuum evaporated cadmium sulphide (CdS) thin films were implanted with $Ar^+$ and $N^+$ for different doses. The properties of the ion implanted CdS thin films have been analysed using XRD, optical transmittance spectra, and Raman scattering studies. Formation of Cd metallic clusters were observed in ion implanted films. The band gap of $Ar^+$ doped films decreased from 2.385 eV of the undoped film to 2.28 eV for the maximum doping. In the case of $N^+$ doped film the band gap decreased from 2.385 to 2.301 eV, whereas the absorption coefficient values increased with the increase of implantation dose. On implantation of both types of ions, the Raman peak position appeared at $299\textrm{cm}^{-1}$ and the FWHM changed with the ion dose.

Adsorption Property of Heavy Metal ion, $Cd^{2+}$-$Cl^{3+}$-$Pb^{2+}$+ in HCI Solution (HCl 용액에서의 중금속 이온, $Cd^{2+}$-$Cl^{3+}$-$Pb^{2+}$의 흡착 특성)

  • 박원우;이봉헌
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.779-783
    • /
    • 1996
  • Cation exchange distribution coefficients of poly(dithiocarbamate) were presented for $Cd^{2+}$, $Cr^{3+}$, and $Pb^{2+}$ in HCI. The distribution coefficients were determined tv using the batch method. Based on these distribution data, the separation possibilities of the heavy metal ions were discussed. The distribution coefficients of three heavy metal ions on dithiocarbamate resin were decreased as HCI concentrations were increased. The selective separation of $Cr^{3+}$ and $Cd^{2+}$ was possible by using 0.1M HCl in dithiocarbamate resin and the reproducibility test showed that the average absorptivity of resin was 90% in the case of $Cd^{2+}$ ion by the column method.

  • PDF

Crystal Structure of Nitrogen Adsorption of $Cd^{2+}$ ion Exchanged Zeolite-X (카드늄으로 이온교환된 제올라이트 X의 질소 흡착 결정구조)

  • Lee, Seok-Hee;Jeong, Gyoung-Hwa;Kim, Nam-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.204-211
    • /
    • 2005
  • The structure of nitrogen adsorption complex of fully dehydrated $Cd^{2+}$ ion exchanged zeolite-X, $|Cd_{46}(N)_{18}|[Si_{100}Al_{92}O_{384}]$, was determined in the cubic space group $Fd\overline{3}$ at 21(1) $^{\circ}C$ [a = 24.863(4) ] by single crystal X-ray diffraction analysis. The crystal was prepared by ion exchange in a flowing steam of 0.05 M aqueous solution $Cd(NO_3)_2$ : $Cd(O_2CCH_3)_2$ = 1:1 for five days, followed by dehydration at $500^{\circ}C$ and $2{\times}10^{-6}$ Tor. for two days, and exposured to 100 Tor. zeolitically dry nitrogen gas at 21(1) $^{\circ}C$. The structure was determined in atmosphere, and was refined within $F_0$ > $4{\sigma}(F_0)$ using reflection for which the final error can appear in indices $R_1$ = 0.097 and $wR_2$ = 0.150. In this structure, $Cd^{2+}$ ions occupied four crystallographic sites. Nine $Cd^{2+}$ ions filled the octahedral site I at the centers of hexagonal prisms (Cd-O = 2.452(16) ${\AA}$). Eight $Cd^{2+}$ ions filled site I' (Cd-O = 2.324(19) ${\AA}$). The remaining 29 $Cd^{2+}$ ions are found at two nonequivalent sites II (in the supercages) with occupancy of 11 and 18 ions. Each of these $Cd^{2+}$ ions coordinated to three framework oxygens, either at 2.159(15) or 2.147(14) ${\AA}$, respectively. Eighteen nitrogen molecules were adsorbed per unit cell and three per supercage.

HgCdTe Junction Characteristics after the Junction Annealing Process (열처리 조건에 따른 HgCdTe의 접합 특성)

  • Jeong, Hi-Chan;Kim, Kwan;Lee, Hee-Chul;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.89-95
    • /
    • 1995
  • The structure of boron ion-implanted pn junctio in the vacancy-doped p-type HgCdTe was investigated with the differential Hall measurement. The as-implanted junction showed the electron concentration as high as 1${\times}10^{18}/cm^{3}$ and the junction depth of 0.6.mu.m. When the HgCdTe junction was heated in oven, the electron concentration near the junction decreased and the junction depth increased as the annealing temperature and time increased. The junction structure after the thermal annealing was n$^{+}$/n$^{-}$/p. For the 200.deg. C 20min annealed sample, the electron mobility was 10$^{4}cm^{2}/V{\cdot}$s near the surface(n$^{+}$), and was larger thatn 10$^{5}cm^{2}/V{\cdot}$s near the junction(n$^{+}$). The junction formation mechanism is conjectured as follows. When HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms near the surface. The displaced Hg vacancies diffuse in easily by the thernal treatment and a fill the Hg vacancies in the p-HgCdTe substrate. With the Hg vacancies filled completely, the GfCdTe substrate becomes n-type because of the residual n-type impurity which was added during the wafer growing. Therefore, the n$^{+}$/n$^{-}$/p regions are formed by crystal defects, residual impurities, and Hg vacancies, respectively.

  • PDF

A Study on the Separation of Cadmium from Waste Ni-Cd Secondary Batteries by Ion Substitution Reaction (이온치환 반응을 이용한 니켈-카드뮴 폐이차전지에서 카드뮴의 분리에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Ahn, Nak-Kyoon;Jeong, Hang-Chul;Jung, Soo-Hoon;Choi, Joong-Yup;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • In order to recycle waste nickel-cadmium batteries, cadmium was selectively removed by ion substitution reaction so that cadmium and nickel could be separated efficiently. The electrode powder obtained by crushing the electrode in the waste nickelcadmium battery was leached with sulfuric acid. The cadmium in the nickel-cadmium solution was precipitated with cadmium sulfide by the addition of sodium sulfide. Ion substitution experiments were carried out under various conditions. At the optimum condition with pH = -0.1 and $Na_2S/Cd=2.3$ at room temperature, the residual Cd in the solution was about 100 ppm, and most of it was precipitated with CdS.

Determination of Cadmium(II) Ion Using the Nafion-Ethylenediamine-Modified Glassy Carbon Electrode (Nafion-Ethylenediamine이 수식된 유리탄소전극에 의한 Cd(II) 이온의 정량)

  • Kim, Jin Ah;Ko, Young Chun;Park, Chan Ju;Park, Byung Ho;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.123-130
    • /
    • 2001
  • Determination of cadmium(II) ion with a perfluorinated sulfonated polymer-ethylenediamine(nafion-en) modified glassy carbon electrode was studied. It was based on the chemical reactivity of an immobilized layer(nafion-en) to yield complex $[Cd(en)_2]^{2+}$. The reduction peak potential by differential pulse voltammetry(DPV) was observed at $-0.780({\pm}0.005)V$ vs. As/AgCl. The linear calibration curve was obtained in cadmium(II) ion concentration range $5.0{\times}10^{-7}-2.0{\times}10^{-5}M$, and the detection limit(3s) was $2.20{\times}10^{-7}M$. The detection limit of nafion-en modified glassy carbon electrode has been shown about 14 higher sensitivity than a bare glassy carbon electrode.

  • PDF