• Title/Summary/Keyword: $Ca_2Mg_6Zn_3$

Search Result 400, Processing Time 0.028 seconds

The Effect of Ca Addition on the Grain Refinement and Mechanical Properties in Mg-Zn Alloy (Mg-Zn 합금의 결정립미세화와 기계적 성질에 미치는 Ca 첨가의 영향)

  • Eom, Jeong-Pil;Lim, Su-Gun;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.395-399
    • /
    • 2000
  • The main interdendritic phase which was formed during early solidification of the ternary Mg-Zn-Ca alloys is the $Ca_2Mg_6Zn_3$ phase. The microstructure of $Mg-6wt%Zn-0.1{\sim}0.3wt%Ca$ alloys consisted of MgZn precipitates and $Ca_2Mg_6Zn_3$ phase formed around the grain boundaries. In the alloys with the highest level of Ca($Mg-6wt%Zn-0.5{\sim}0.7wt%aCa$ alloys), the microstructure revealed wholly $Ca_2Mg_6Zn_3$ phase formed around the grain boundaries. The grain size of Mg-6wt%Zn-Ca alloys decreased significantly with increase in Ca content and, at 0.5wt% Ca or more, grain size becomes constant at about 60 ${\mu}m$. The tensile properties of the as-cast Mg-6wt%Zn-Ca magnesium alloys were improved due to grain refinement by addition of Ca.

  • PDF

Effect of Ca Addtion on Microstructure and Mechanical Properties of Mg-11Li-3Zn-1Sn-0.4Mn Based Alloys (Mg-11Li-3Zn-1Sn-0.4Mn 마그네슘 합금의 Ca 첨가에 따른 미세조직 및 기계적 특성평가)

  • Kim, Jung-Han;Kim, Yong-Ho;Yoo, Hyo-Sang;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.269-273
    • /
    • 2015
  • The effect of adding Ca on the microstructural and mechanical properties of as-cast Mg-11Li-3Zn-1Sn(wt%) alloys were investigated. Mg-11Li-3Zn-1Sn-0.4Mn with different Ca additions (0.4, 0.8, 1.2 wt%) were cast under an $SF_6$ and $Co_2$ atmosphere at $720^{\circ}C$. The cast billets were homogenized at $400^{\circ}C$ for 12h and extruded at $200^{\circ}C$. The microstructural and mechanical properties were analyzed by OM, XRD, SEM, and tensile tests. The addition of Ca to the Mg-11Li-3Zn-1Sn-0.4Mn alloy resulted in the formation of $Ca_2Mg_6Zn_3$, MgSnCa intermetallic compound. By increasing Ca addition, the volume fraction and size of $Ca_2Mg_6Zn_3$ with needle shape were increased. This $Ca_2Mg_6Zn_3$ intermetallic compound was elongated to the extrusion direction and refined to fine particles due to severe deformation during hot extrusion. The elongation of the 0.8 wt% Ca containing alloy improved remarkably without reduction strength due to the formation of fine grain and $Ca_2Mg_6Zn_3$ intermetallic compounds by Ca addition. It is probable that fine and homogeneous $Ca_2Mg_6Zn_3$ intermetallic compounds played a significant role in the increase of mechanical properties.

The Effect of Ca Addition on Creep Behavior of As-cast Mg-8.0Zn-1.6Y Alloys with Icosahedral Phase (Icosahedral 상을 갖는 Mg-8Zn-1.6Y 합금의 크리프 거동에 미치는 Ca 첨가 영향)

  • Jung, Young-Gil;Yang, Wonseok;Kim, Shae K.;Lim, Hyunkyu;Oh, Gun-Young;Kim, Youngkyun;Kim, Do Hyang
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.7-15
    • /
    • 2020
  • The high-temperature stability of Mg-8.0Zn-1.6Y (wt.%) alloys upon the addition of Ca has been investigated by characterizing the ignition temperature, microstructure, tensile and creep properties. The ignition temperature increases with an increase in the Ca content, indicating that an addition of Ca enhances the ignition resistance of the Mg-Zn-Y alloy. The as-cast microstructures of all tested alloys mainly consisted of the dendritic α-Mg matrix and I-phase (Mg3Zn6Y) at the grain boundaries. In the Ca-added Mg-8.0Zn-1.6Y alloys, the Ca2Mg6Zn3 phase forms, with this phase fraction increasing with an increase in the Ca contents. However, a high volume fraction of the Ca2Mg6Zn3 phase rather deteriorates the mechanical properties. Therefore, a moderate amount of Ca element in Mg-8.0Zn-1.6Y alloys is effective for improving the tensile and creep properties of the Mg-Zn-Y alloy. The Mg-8.0Zn-1.6Y-0.3Ca alloy exhibits the highest tensile strength and the lowest creep strain among the alloys investigated in the present study. The creep resistance of Mg-Zn-Y-Ca alloys depends on the selection of the secondary solidification phase; i.e., when Ca2Mg6Zn3 forms in an alloy containing a high level of Ca, the creep resistance deteriorates because Ca2Mg6Zn3 is less stable than the I-phase at a high temperature.

Effect of Sr Addition on Mechanical and Corrosion Properties of Mg-Zn-Ca Alloy for Biodegradable Implant Material (생체 분해성 임플란트용 Mg-Zn-Ca 합금의 기계적 및 부식특성에 미치는 Sr 첨가의 영향)

  • Kong, Bo-Kwan;Cho, Dae-Hyun;Yun, Pil-Hwan;Lee, Jeong-Hun;Park, Jin-Young;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.155-162
    • /
    • 2015
  • The effect of Sr addition on mechanical and bio-corrosion properties of as-cast Mg-3wt.%Zn-0.5wt.%Ca-xwt.%Sr (x = 0.3, 0.6, 0.9) alloys were examined for application as biodegradable implant material. The microstructure, mechanical properties and corrosion resistance of the as-cast Mg-Zn-Ca-Sr alloys were characterized by using optical microscopy, scanning electron microscopy, tensile testing and electrochemical measurement in Hank's solution. The as-cast alloys contained ${\alpha}$-Mg and eutectic $Ca_2Mg_6Zn_3$ phases, while the alloys contained ${\alpha}$-Mg, $Ca_2Mg_6Zn_3$ and Mg-Zn-Ca-Sr intermetallic compound when the Sr addition was more than 0.3 wt.%. The yield strength, ultimate tensile strength and elongation increased with the increasing of Sr content up to 0.6 wt.% but decreased in the 0.9 wt.% Sr-added alloy, whereas the corrosion resistance of 0.3 wt.% Sr-added alloy was superior to other alloys. It was thought that profuse Mg-Zn-Ca-Sr intermetallic compound deteriorated both the mechanical properties and corrosion resistance of the as-cast alloy.

Phase Change of Precipitates and Age Hardening in Rapidly Solidified Mg-Zn-Ca Base Alloys

  • Park Won-Wook;You Bong-Sun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.303-308
    • /
    • 2005
  • Various kinds of Mg-Zn-Ca base alloys were rapidly quenched via melt spinning process. The meltspun ternary and quaternary alloy ribbons were heat-treated, and then the effects of additional elements on age hardening behavior and phase change of precipitates were investigated using Vickers hardness tester, XRD, and TEM equipped with EDS system. In ternary alloys, age hardening was mostly due to the distribution of $Mg_6Ca_2Zn_3$ and $Mg_2Ca$. The stable phases of precipitates were varied according to the aging temperature and the alloy composition. With the increase of Ca content, $Mg_2Ca$ precipitates were detected more than $Mg_6Ca_2Zn_3$ precipitates. In quaternary alloys, the precipitates taken from Mg-Zn-Ca-Co were identified as new quaternary phase, whereas those taken from Mg-Zn-Ca-Zr as MgZnCa containing Zr. In general, the ternary alloy showed higher peak hardness and thermal stability than the quaternary considering the total amounts of the solutes. It implies that the structure of precipitate should be controlled to have the coherent interface with the Mg matrix.

Mechanical Properties and Microstructure of Mg-Zn-(Mn)-Ca Alloys (Mg-Zn-(Mn)-Ca 합금의 미세조직 및 기계적성질)

  • Eom, Jeong-Pil;Cha, Dong-Deuk;Lim, Su-Guen;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • The microstructure and tensile properties of Mg-Zn-Ca and Mg-Zn-Mn-Ca alloys have been investigated. The alloys were obtained by melting in a low carbon crucible coated with boron nitride under an Ar gas atmosphere to prevent oxidation and combustion. The Mg alloy melt was cast into the metallic mold at room temperature, and cooling part was located at the bottom of mold. The phase formed during solidification of the Mg-Zn-(Mn) alloys containing 0.5%Ca is $Ca_2Mg_6Zn_3$. The yield strength and ultimate tensile strength of the alloys increased with increasing Zn content, but the ductility did not change with increasing Zn content. The addition of Mn improves the yield strength and ultimate tensile strength of the alloys, but the ductility did not change. Tensile fracture of the alloys revealed brittle failure, with cracking along the $Ca_2Mg_6Zn_3$ phase. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$.

  • PDF

Glass Forming Ability and Characteristic Evaluation in Ca-Mg-Zn Alloy System (Ca-Ma-Zn 합금계에서 비정질 형성능 및 특성 평가)

  • Park, Eun-Soo;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • The effect of alloy composition on the glass forming ability (GFA) of the Ca-rich Ca-Mg-Zn alloys has been investigated in $Ca_{65}Mg_{5+x}Zn_{30-x}$ and $Ca_{55+x}Mg_{15}Zn_{30-x}$ (x=0, 5, 10, 15, 20) alloys. In a wide composition range of 15-25% Zn and 10-20% Mg bulk metallic glass (BMG) samples with the diameter larger than 6 mm are fabricated by conventional copper mold casting method in air atmosphere. Among the alloys investigated, the $Ca_{65}Mg_{15}Zn_{20}$ alloy exhibits the highest GFA enabling to form BMG sample with the diameter of at least 15 mm. The crystalline phase formed during solidification of $Ca_{65}Mg_{15}Zn_{20}$ ($D_{max}=15\;mm$) could be identified as a mixture of $Ca_3Zn$ and $CaMg_2$ cause by the redistribution of the constituent elements on long-range scale. The compressive fracture strength and fracture elongation of the $Ca_{65}Mg_{15}Zn_{20}$ BMG are 602 MPa and 2.08% respectively. The ${\sigma}$ parameter which has been recently proposed for evaluating GFA exhibits better correlation with GFA of Ca-Mg-Zn alloys than other parameters suggested so far such as ${\Delta}T_x$, $T_{rg}$, K, ${\gamma}$, and ${\Delta}T^*$ parameters.

Effect of calcium addition on creep properties in Mg-Zn-Y alloys (Mg-Zn-Y 합금의 크리프 저항성에 미치는 칼슘의 영향)

  • Lee, Yoon-Hee;Lim, Hyun-Kyu;Kim, Do-Hyung;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.27 no.5
    • /
    • pp.198-202
    • /
    • 2007
  • In the present study, the high temperature mechanical properties and creep resistance of Mg-Zn-Y-Ca alloys has been investigated. The Mg-4Zn-0.8Y alloy consists of ${\alpha}$-Mg matrix and icosahedral quasicrystalline phase. Calcium addition into Mg-4n-0.8Y based alloy results in the formation of ${\tau}(Ca_{2}Mg_{6}Zn_{3})$ and $Mg_{2}Ca$ as the second solidification phases. Creep properties of the Mg-Zn-Y and Mg-Zn-Ca based alloys measured at applied stresses between 65 MPa and 85 MPa are significantly improved with adding calcium and yttrium, respectively. The improved creep resistance is due to the formation of thermally stable $Mg_{2}Ca$ phase.

Variation of Dielectric Properties and Phase Stabilities with Substitution of A-Site in $Pb(Zn_{0.6}Mg_{0.4})_{1/3}Nb_{2/3}O_3$[PZMN] System ($Pb(Zn_{0.6}Mg_{0.4})_{1/3}Nb_{2/3}O_3$ [PZMN] 계에서 A-자리 치환에 따른 상안정화 및 유전 특성 변화)

  • 김봉철;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1131-1137
    • /
    • 1996
  • The dielectric properties and phase stabilities of Pb(Zn0.6Mg0.4)1/3Nb2/3O3 [PZMN]system were investigated into substitution of A-site with Ba, Sr and Ca ions. The A-site substitutions led to the complexity of components of perovskite phase and then DPT coefficient increased. The A-site substitutions of Ba or Sr ion perovskite single phase could be easily formed by columbite process due to increase of perovskite phase stability. The variation of lattice parameters in specimen obeyed Vegard's law and curie temperature and dielectric constant of specimen decreased linearly. But Ca substitution led to perovskite phae instability. The lattice parameter dielectric constant and curie temperature of specimens drasticaly decreased with formation of pyrochlore phase.

  • PDF

Effect of Micronutrient Supplementation on the Growth of Preschool Children in China

  • Han, Junhua;Yang, Yuexin;Shao, Xiaoping;He, Mei;Bian, Lihua;Wang, Zhu
    • Nutritional Sciences
    • /
    • v.5 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • The purpose of this study was to investigate the effects of micronutrient supplementation on the growth of preschool children in China. A double-blind, placebo-controlled trial was conducted on 156 growth retarded preschool children who were randomly assigned to the following five groups : supplemental control (S-control; n=28); zinc supplementation (+Zn; 3.5mg Zn/day, n=34); zinc and calcium supplementation (+ZnCa; 3.5mg Zn + 250mg Ca/day, n=37); zinc, calcium and vitamin A supplementation (+ZnCaVA; 3.5mgZn + 250mgCa + 200gVA/day, n=28); and calcium and vitamin A supplementation (+CaVA; 250mgCa + 200gVA/day, n=29). Another 34 children of normal height were selected as a normal control (N-control). Supplementation continued for twelve months. After supplementation, the height gains in the +Zn group (7.84cm per year) and the +ZnCa group (7.70 cm per year) were significantly higher than that in the S-control group (6.74 cm per year, P<0.05). The weight gain in the +ZnCaVA group (2.55kg per year) and the +CaVA group (2.57 kg per year) was also significantly higher than that in the S-control group (2.19 kg per year, P<0.05). The average number of days of illness in each group taking supplements was lower than that in the S-control group (13 days per year compared with 23 days per year). No significant differences in bone maturity were observed between the groups. In conclusion, in this study Zinc and Zinc + Calcium supplementation improved the height gain, and vitamin A improved the weight gain, in growth retarded preschool children, but these supplements did not affect the maturity of bone. Micronutrient supplementation also lowered the morbidity of these children.