• 제목/요약/키워드: $Ca^{+2}$ release

검색결과 587건 처리시간 0.04초

Cyclopiazonic acid 및 aflatoxin B1이 토끼의 혈소판에서 arachidonic acid 대사, 칼슘 동원 및 초미세구조에 미치는 영향 (Effects of cyclopiazonic acid and aflatoxin B1 on arachidonic acid metabolism, calcium mobilization and ultrastructure in rabbit platelet aggregation)

  • 홍충만;장동덕;조명행
    • 대한수의학회지
    • /
    • 제36권4호
    • /
    • pp.873-886
    • /
    • 1996
  • For better understanding the interrelationship of hemorrhage and aggregation mechanism, cyclopiazonic acid(CPA) known as promoting the aggregation of platelet, aflatoxin $B_1(AFB_1)$ inhibiting platelet aggregation were used as toxic mycotoxins in these studies. In order to investigate the potential role of prostaglandin metabolism on the platelet aggregation, a variety of prostaglandin metabolites such as $PGF_{2{\alpha}}$, $PGE_2$ and $TXB_2$ were measured in homogenized rabbit platelets by TLC and LSC. And the role of $Ca^{{+}{+}}$ on the platelet aggregation was investigated by flow cytometer. Finally, the morphological effects of mycotoxins on platelet were determined by transmission electron microscope. The results and conclusions obtained from these studies are: 1) CPA induced no changes but $AFB_1$ increased $PGE_2$ and $TXB_2$. 2) CPA promoted ADP, collagen, thrombin, A.A., and PAF-induced $Ca^{{+}{+}}$ release. $AFB_1$, however, decreased $Ca^{{+}{+}}$ level except collagen-induced $Ca^{{+}{+}}$ release. When the calcium blocker, verapamil, was used, CPA decreased thrombin-induced $Ca^{{+}{+}}$ release and increased collagen, ADP, PAF and A.A.-induced $Ca^{{+}{+}}$ release. $AFB_1$ in contrast decreased the all factors induced $Ca^{{+}{+}}$ release. 3) $AFB_1$ did not induce any ultrastructural changes except large vacuole formation in a few platelets. And CPA also did not induce any changes except moderate shape change, indicator of platelet activation. In conclusion, CPA promoted platelet aggregation by the increases of $Ca^{{+}{+}}$ release but had no changes in A.A. metabolites. Antiaggregating effects of $AFB_1$ may be due to decreases of $Ca^{{+}{+}}$ release and increases of $PGE_2$ and $PGF_{2{\alpha}}$ formation. These data provide the basis for the future study of mobilization and function of $Ca^{{+}{+}}$ in platelet aggregation.

  • PDF

Influence of Cilnidipine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Woo, Seong-Chang;Baek, Young-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.265-272
    • /
    • 2004
  • The present study was attempted to investigate the effect of cilnidipine (FRC-8635), which is a newly synthesised novel dihydropyridine (DHP) type of organic $Ca^{2+}$ channel blockers, on secretion of catecholamines (CA) evoked by acetylcholine (ACh), high $K^+$, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine $(1{\sim}10{\mu}M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M),\;DMPP\;(10^{-4}M\;for\;2\;min)$ and McN-A-343 $(10^{-4}M\;for\;2\;min)$. However, lower dose of cilnidipine did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$, higher dose of it reduced greatly CA secretion of high $K^{+}$. Cilnidipine itself did fail to affect basal catecholamine output. In the presence of cilnidipine $(10{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10{\mu}M)$, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid $(10{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. Moreover, ${\omega}-conotoxin\;GVIA\;(1{\mu}M)$, a selective blocker of the N-type $Ca^{2+}$ channels, given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by Ach, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. Taken together, these results demostrate that cilnidipine inhibits CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland without affecting the basal release. However, at lower dose, cilnidipine did not affect CA release by membrane depolarization while at larger dose inhibited that. It seems likely that this inhibitory effect of cilnidipine is exerted by blocking both L- and N-type voltage-dependent $Ca^{2+}$ channels (VDCCs) on the rat adrenomedullary chromaffin cells, which is relevant to inhibition of both the $Ca^{2+}$ influx into the adrenal chromaffin cells and intracellular $Ca^{2+}$ release from the cytoplasmic store. It is thought that N-type VDCCs may play an important role in regulation of CA release from the rat adrenal medulla.

횐쥐 부신에서 Opioid가 니코틴 수용체를 통한 카테콜아민 분비작용에 미치는 영향 (Effect of Opioid on Nicotinic Receptor-Mediated Catecholamine Secretion in the Rat Adrenal Gland)

  • 임동윤;이종진;최철희
    • 대한약리학회지
    • /
    • 제28권2호
    • /
    • pp.181-190
    • /
    • 1992
  • 흰쥐 적출관류 부신에서 선택적인 nicotine 수용체 효능약인 DMPP(1,1-dimethyl-4-phenylpiperazinium)와 acetylcholine(ACh)의 카테콜아민(CA) 분비작용에 대한 opioids의 영향을 연구하고자 시행하여 얻어진 연구결과는 다음과 같다. Methionine-enkephalin$(9.68{\times}10^{-6}\;M)$으로 전처치시 DMPP(100 uM)과 $ACh(50\;{\mu}g)$에 의한 CA 유리작용이 현저히 억제되었으며 basal CA release는 영향을 받지 않았다. Morphine$(1.73{\times}10^{-5}\;M)$으로 전처치시 DMPP 및 excess $K^+$의 CA 분비작용은 뚜렷이 약화되었다. Morphine 역시 그자체는 basal CA release에는 영향을 미치지 않았다. Opiate 수용체 길항제인 naloxone$(1.22{\times}10^{-7}\;M)$은 DMPP 및 ACh에 의한 CA 분비작용을 현저히 차단 하였으나 basal CA release에는 영향을 미치지 못하였다. 이와 같은 연구결과로 보아, 흰쥐 관류 부신에서 니코틴 수용체에 의한 CA 분비작용은 내인성 opioid peptide에 의해서 억제되며, 이는 부신에 존재하는 opiate 수용체 흥분작용에 기인되는 것으로 사료된다.

  • PDF

갑각류 골격근의 Sarcoplasmic Reticulum에서 칼슘유리 (Characterization of Calcium Release Channel (Ryanodine Receptor) in Sarcoplasmic Reticulum of Crustacean Skeletal Muscle)

  • 석정호;정정구;허강민;이재흔
    • 대한약리학회지
    • /
    • 제30권1호
    • /
    • pp.125-136
    • /
    • 1994
  • 갑각류 골격근의 SR에서 칼슘유리 channel protein complex의 성격을 규명하기 위해 민물가재 및/또는 바다가재의 SR vesicles을 분리하여 $^{45}Ca$ 유리, $[^3H]ryanodine$결합, 및 immunoblot 실험을 실시하여 다음과 같은 결과를 얻었다. 1.민물가재 SR의 $[^3H]ryanodine$결합 실험에서 민물가재 SR의 maximal binding site및 affinity모두 바다가재에서 보다 낮았으나, high affinity binding site이었다. Extravesicles 칼슘농도를 증가시켰을 때 $[^3H]ryanodine$결합은 약간 증가되었으나, AMP나 AMP와 caffeine을 동시에 첨가하였을 때는 현저히 증가되었다(p<0.05). 이런 증가 현상은 $MgCl_2$나 tetracaine으로 유의성 있게 억제되었으나(p<0.001), ruthenium red에 의해서는 약간 억제되었다. 2.민물가재 SR을 전기영동하였을 때 바다가재의 ryanodine receptor band (HMWBr)와 비슷하나 포유류의 것(HMWBS) 보다는 약간 빠른 mobility를 나타낸다. 3.바다가재 HMWBr에 대한 polyclonal Ab를 이용한 민물가재, 바다가재 및 토끼 골격근의 칼슘유리 channel간의 면역학적 교차반응에서 민물가재와 바다가재의 칼슘유리 channel 간에는 교차반응이 있었으나, 포유류의 것과는 아무런 반응이 없었다. 4.민물가재 SR에서 $^{45}Ca$유리는 extravesicles의 칼슘농도 증가에 따라서 증가되었고, 낮은 외부 칼슘 농도에서 바다가재 보다 빠르게 일어났으나, AMP와 caffeine에 의해 영향을 받지 않았고, $MgCl_2$와 tetracaine으로 약간($3{\sim}8%$) 그리고 고농도의 ruthenium red로 중등도(23%) 억제되었다. 이상의 실험성적으로 갑각류 칼슘유리 channel protein은 포유류의 것과는 기능적으로나 면역학적으로 매우 다른 특징을 가지고 있고, 민물가재와 바다가재 칼슘유리 channel은 서로 유사한 특징을 갖지만, 민물가재의 칼슘유리 channel이 바다가재의 것보다 외부칼슘에 예민한 기능을 갖는 것으로 사료된다.

  • PDF

The NADPH oxidase inhibitor diphenyleneiodonium suppresses Ca2+ signaling and contraction in rat cardiac myocytes

  • Qui Anh Le;Tran Nguyet Trinh;Phuong Kim Luong;Vu Thi Van Anh;Ha Nam Tran;Joon-Chul Kim;Sun-Hee Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.335-344
    • /
    • 2024
  • Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

망막 ON형 쌍극세포의 광응답에 따른 다중성분의 전달물질 방출에 관한 해석 (Analysis on Multi-Components of Neurotransmitter Release in Response to Light of Retinal ON-Type Bipolar Cells)

  • 정남채
    • 융합신호처리학회논문지
    • /
    • 제14권4호
    • /
    • pp.222-230
    • /
    • 2013
  • 망막 쌍극세포는 광자극에 대하여 완만한 전위응답을 하며, 막전위에 의존하여 전달물질(glutamine 산)을 방출한다. 본 논문에서는 ON형 쌍극세포의 시냅스 앞단에서 전달물질 방출 기구에 관한 여러 가지의 생리학적 정보를 수식적 모델로 통합하였다. 전달물질 방출의 빠른 성분과 느린 성분의 공급원을 병렬로 배치한 본 모델은 전달물질 방출의 막전위 및 세포 내 $Ca^{2+}$ 농도 의존성을 충실하게 재현할 수가 있었다. 또한 전달물질의 빠른 방출 성분은 사다리꼴 모양의 막전위 의존성을 나타내는 데에 반하여, 느린 방출 성분은 종모양의 막전위 의존성을 나타내기 때문에 세포 내의 $Ca^{2+}$ 농도 상승을 $Ca^{2+}$ 완충제로 억제하여 느린 방출 성분이 감소되고, 전달 물질 방출의 막전위 의존성이 사다리꼴 모양의 특성이 되는 것을 확인하였다. 그리고 ON 형 쌍극세포의 광응답에서 일시적 성분과 지속적 성분에 의하여 발생하는 전달물질 방출을 시뮬레이션한 결과 광응답의 시작은 전달물질을 빠르게 방출하게 하였으며, 광응답의 일시적 성분과 초기의 지속적 성분은 전달물질을 느리게 방출하도록 하였다. 또한 광응답의 후기 지속적 성분은 저장 pool로부터 보충된 시냅스 소포에 의하여 지속적인 방출이 발생하기 때문이라는 것을 확인하였다.

Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum

  • Rani, Shilpa;Park, Chang Sik;Sreenivasaiah, Pradeep Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.149-155
    • /
    • 2016
  • In the heart, excitation-contraction (E-C) coupling is mediated by $Ca^{2+}$ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the $Ca^{2+}$ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich $Ca^{2+}$ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the $Ca^{2+}$ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped $Ca^{2+}$ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such $Ca^{2+}$ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of $Ca^{2+}$ into SR at intermediate $Ca^{2+}$ concentrations.

Identification of binding motifs for skeletal ryanodine receptor and triadin

  • Lee, Jae-Man;Kim, Do-Han
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.66-66
    • /
    • 2003
  • In skeletal muscle cells, depolarization of the transverse tubules (T-tubules) results in Ca$\^$2+/ release from the sarcoplasmic reticulum (SR), leading to elevated cytoplasmic Ca$\^$2+/ and muscle contraction. This process has been known as excitation-contraction coupling (E-C coupling). Several proteins, such as the ryanodine receptor (RyR), triadin, junctin, and calsequestrin (CSQ), have been identified to be involved in the Ca$\^$2+/ release process. However, the molecular interactions between the SR proteins have not been resolved. In the present study, the mechanisms of interaction between RyRl and triadin have been studied by in vitro protein binding and $\^$45/Ca$\^$2+/ overlay assays. Our data demonstrate that the intraluminal loop II of RyR1 binds to triadin in Ca$\^$2+/-independent manner. Moreover, we could not find any Ca$\^$2+/ binding sites in the loop II region. GST-pull down assay revealed that a KEKE motif of triadin, which was previously identified as a CSQ binding site (Kobayasi et al.,2000 JBC) was also a binding site for RyR1. Our results suggest that the intraluminal loop II of RyR could participate in the RyR-mediated Ca$\^$2+/ release process by offering a direct binding site to luminal triadin.

  • PDF

Drug Release from Thermo-Responsive Self-assembled Polymeric Micelles Composed of Cholic Acid and Poly(N-isopropylacrylamide)

  • Kim, In-Sook;Jeong, Young-Il;Lee, Yun-Ho;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • 제23권4호
    • /
    • pp.367-373
    • /
    • 2000
  • Cholic acid, conjugated with amine-terminated poly(W-isopropylacrylamide) (abbreviated as CA/ATPNIPAAm), was synthesized by a N, N'-dicyclohexyl carbodiimide (DCC)-mediated coupling reaction. Self-assembled CA/ATPNIPAAm micelles were prepared by a diafiltration method in aqueous media. The CA/ATPNIPAAm micelles exhibited a lower critical solution temperature (LCST) at $31.5^{\circ}C$. Micelle sizes measured by photon correlation spectroscopy (PCS) were approximately 31.6 $\times$$\times$ 5.8 nm. The CA/ATPNIPAAm micelles were spherical and their thermal size transition was observed by transmission electron microscope (TEM). A fluorescence probe technique was used for determining the micelle formation behavior of CA/ATPNIPAAm in aqueous solutions using Pyrene as a hydrophobic Probe. The critical micelle concentration (CMC) was evaluated as $8.9{\times}0^{-2}$ g/L. A drug release study was performed using indomethacin (IN) as a hydrophobic model drug. The release kinetics of IN from the CA/ATPNIPAAm micelles revealed a thermo-sensitivity by the unique character of poly(N-isopropylacrylamide) i.e. the release rate was higher at $25^{\circ}C$ than at $37^{\circ}C$.

  • PDF

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권2호
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.