• Title/Summary/Keyword: $C_5-pathway$

Search Result 792, Processing Time 0.025 seconds

Release of Cytochrome c from Isolated Mitochondria by Etoposide

  • Park, Jung-Hee;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.619-623
    • /
    • 2005
  • The efficacy of chemotherapeutic agents on tumor cells has been shown to be modulated by tumor suppressor gene p53 and its target genes such as Bcl-2 family members (Bax, Noxa, and PUMA). However, various chemotherapeutic agents can induce cell death in tumor cells that do not express the functional p53, suggesting that some chemotherapeutic agents may induce cell death in a p53-independent pathway. Here we showed that etoposide can induce the similar degree of cell death in p53-deficient HCT 116 cells, whereas 5'-FU-mediated cell death is strongly dependent on the existence of functional p53 in HCT 116 cells. Further, we provide the evidence that etoposide can induce the cytochrome c release from isolated mitochondria, and etoposide-induced cytochrome c release is not accompanied with the large amplitude swelling of mitochondria. These data suggest that etoposide can directly induce the mitochondrial dysfunction irrespective of p53 status, and it may, at least in part, account for the p53-independent pathway in cell death induced by chemotherapeutic agents.

Non-toxic sulfur enhances growth hormone signaling through the JAK2/STAT5b/IGF-1 pathway in C2C12 cells

  • Dong Young Kang;Nipin Sp;Eun Seong Jo;Hyoung Do Kim;Il Ho Kim;Se Won Bae;Kyoung‑Jin Jang;Young Mok Yang
    • International Journal of Molecular Medicine
    • /
    • v.45 no.3
    • /
    • pp.931-938
    • /
    • 2020
  • Insulin-like growth factor-1 (IGF-1) regulates cell growth, glucose uptake and protein metabolism, and is required for growth hormone (GH) signaling-mediated insulin production and secretion. IGF1 expression is associated with STAT5, which binds to a region (TTCNNNGAA) of the gene. Although sulfur is used in various fields, the toxicity of this element is a significant disadvantage as it causes indigestion, vomiting, diarrhea, pain and migraine. Therefore, it is difficult to conduct in vitro experiments to directly determine the effects of dietary sulfur. Additionally, it is difficult to dissolve non-toxic sulfur (NTS). The present study aimed to identify the role of NTS in GH signaling as a Jak2/STAT5b/IGF-1 pathway regulator. MTT assay was used to identify an optimum NTS concentration for C2C12 mouse muscle cells. Western blotting, RT-PCR, chromatin immunoprecipitation, overexpression and small interfering RNA analyses were performed. NTS was dissolved in 1 mg/ml DMSO and could be used in vitro. Therefore, the present study determined whether NTS induced mouse muscle cell growth via GH signaling. NTS notably increased STAT5b binding to the Igf1 promoter. NTS also promoted GH signaling by upregulating GH receptor expression, similar to GH treatment. NTS enhanced GH signaling by regulating Jak2/STAT5b/IGF-1 signaling pathway factor expression in C2C12 mouse muscle cells. Thus, NTS may be used as a GH-enhancing growth stimulator.

Cytosine Arabinoside-Induced PC12 Cell Death Pathway (Cytosine Arabinoside 유도된 PC12 세포의 사망 경로)

  • Yang, Bo-Gee;Yang, Byung-Hwan;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.2
    • /
    • pp.219-226
    • /
    • 1998
  • Cytosine arabinoside(AraC) inhibits DNA synthesis and ${\beta}$-DNA polymerase, an enzyme involved in DNA repair. This, a potent antimitotic agent, is clinically used as an anticancer drug with side effect of severe neurotoxicity. Earlier reports suggested that inhibition of neuronal survival by AraC in sympathetic neuron may be due to the inhibition of a 2'-deoxycytidine-dependent process that is independent of DNA synthesis or repair and AraC induced a signal that is triggers a cascade of new mRNA and protein synthesis, leading to apoptotic cell death in cultured cerebellar granule cells. The present study would suggest whether caspase family(ICE/CED-3-like protease) involved in AraC-induced apoptosis pathway of PC12 cells. It was observed that treatment of PC12 cells with AraC led to decrease of viability by MTT assay and morphology changes, which did not suggest that AraC induced apoptosis in PC12 cells. The mRNA of caspase-1/caspase-3 were expressed in PC12 cells constitutively, and AraC did not activate caspase family. These results suggest that caspase-1/caspase-3 may not be required for AraC-induced cell death pathway in PC12 cells.

  • PDF

Induction by Carvone of the Polychlorinated Biphenyl (PCB)-Degradative Pathway in Alcaligenes eutrophus H850 and Its Molecular Monitoring

  • Park, Young-In;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.804-810
    • /
    • 1999
  • There is a possibility that carvone, a monoterpene from spearmint (Mentha spicata), could induce the bph degradative pathway and genes in Alcaligenes eutrophus H850, which is a known Gram-negative PCB degrader with a broad substrate specificity that was thoroughly investigated with Arthrobacter sp. BIB, a Gram-positive PCB degrader. The strains BIB and H850 were unable to utilize and grow on the plant terpene [(R)-(-)-carvone] (50ppm) to be recognized as a sole carbon source. Nevertheless, the carvone did induce 2,3-dihydroxybiphenyl 1,2-dioxygenase (encoded by bphC) in the strain B lB, as observed by a resting cell assay that monitors accumulation of a yellow meta ring fission product from 4,4'-dichlorobiphenyl (DCBp). The monoterpene, however, did not appear to induce the meta cleavage pathway in the strain H850. Instead, an assumption was made that the strain might be using an alternative pathway, probably the ortho-cleavage pathway. A reverse transcription (RT)-PCR system, utilizing primers designed from a conserved region of the bphC gene of Arthrobacter sp. M5, was employed to verify the occurrence of the alternative pathway. A successful amplification (182bp) of mRNA transcribed from the N-terminal region of the bphC gene was accomplished in H850 cells induced by carvone (50ppm) as well as in biphenyl-growth cells. It is, therefore, likely that H850 possesses a specific PCB degradation pathway and hence a different substrate specificity compared with B1B. This study will contribute to an elucidation of the dynamic aspects of PCB bioremediation in terms of roles played by PCB degraders and plant terpenes as natural inducer substrates that are ubiquitous and environmentally compatible.

  • PDF

Production of Indole-3-acetate in Corynebacterium glutamicum by Heterologous Expression of the Indole-3-pyruvate Pathway Genes

  • Kim, Yu-mi;Kwak, Mi-hyang;Kim, Hee-sook;Lee, Jin-ho
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.242-249
    • /
    • 2019
  • Biosynthesis of indole-3-acetate (IAA) from L-tryptophan via indole-3-pyruvate pathway requires three enzymes including aminotransferase, indole-3-pyruvate decarboxylase, and indole-3-acetate dehydrogenase. To establish a bio-based production of IAA, the aspC, ipdC, and iad1 from Escherichia coli, Enterobacter cloacae, and Ustilago maydis, respectively, were expressed under control of the tac, ilvC, and sod promoters in C. glutamicum. Cells harboring ipdC produced tryptophol, indicating that the ipdC product is functional in this host. Analyses of SDS-PAGE and enzyme activity revealed that genes encoding AspC and Iad1 were efficiently expressed from the sod promoter, and their enzyme activities were 5.8 and 168.5 nmol/min/mg-protein, respectively. The final resulting strain expressing aspC, ipdC, and iad1 produced 2.3 g/l and 7.3 g/l of IAA from 10 g/l L-tryptophan, respectively, in flask cultures and a 5-L bioreactor.

Effect of glutamic acid and its ${\gamma}-derivatives$ on the production of ${\delta}-aminolevulinic{\;}acid$ by Rhodobacter sphaeroides (Rhodobacter sphaeroides에 의한 ${\delta}-aminolevulinic{\;}acid$생산에 있어서 glutamic acid 및 감마 유도체의 영향)

  • Choi, Kyung-Min;Lim, Wang-Jin;Hwang, Se-Young
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.184-190
    • /
    • 1993
  • The effect of ${\delta}-aminolevulinic\;acid$ (ALA) biosynthetic precursors and related compounds on the ALA productivity from a strain of Rhodobacter sphaeroides has been examined in vivo and in vitro systems. The relative ratios of ALA productivities by $C_{4}$- pathway to that by $C_{5}$-pathway in vivo and in vitro systems were 0.78 and 1.37, respectively. Although the expression rates of $C_{4}-$ and $C_{5}-pathways$ in cell-free systems prepared after precursors supplemented cultivations were increased 1.35 and 1.52 folds, respectively, the rate increase of $C_{4}-pathway$ was accompanied by the rate decrease of the $C_{5}-pathways$, and vice versa, as that the rates of both $C_{4}-$ and $C_{5}-pathways$ were lowered to be 0.91, 0.83, respectively. The order of cellular uptake rates of ${\gamma}-glutamyl$ derivatives relative to that found with L-glutamic acid were shown to be D-glutamic acid, 0.55: D-glutamine, 0.5: L-glutamine, 0.4: ${\gamma}-L-glutamyl$ ethylester, 0.3: GSH and Glu-pNA, 0. L and D configurations of glutamine were indicated as better substrates in vivo for ALA yields than those of glutamic acid, respectively.

  • PDF

Comparative Modeling Studies of 1-deoxy-D-xylulose 5-phosphate Synthase (MEP pathway) from Mycobacterium Tuberculosis

  • Kothandan, Gugan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.202-209
    • /
    • 2011
  • Tuberculosis is a major health problem in humans because of its multidrug resistance and discovering new treatments for this disease is urgently required. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target. In this context, 2C-methyl-D-erythritol 4-phosphate (MEP) pathway of M. tuberculosis has drawn attention. The MEP pathway begins with the condensation of glyceraldehyde 3-phosphate and pyruvate forming 1-deoxy-D-xylulose 5-phosphate (DXP) which is catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS). As there is no X-ray structure was reported for this target, comparative modeling was used to generate the three dimensional structure. The structure was further validated by PROCHECK, VERIFY-3D, PROSA, ERRAT and WHATIF. Molecular docking studies was performed with the substrate (Thiamine pyrophosphate) and the reported inhibitor 2-methyl-3-(4-fluorophenyl)-5-(4-methoxy-phenyl)-4H-pyrazolol[1,5-a]pyrimidin-7-one) against the developed model to identify the crucial residues in the active site. This study may further be useful to provide structure based drug design.

Quercetin Relaxed the Smooth Muscle of Rabbit Penile Corpus Cavernosum by Activating the NO-cGMP Signaling Pathway

  • Choi, Bo Ram;Kim, Hye Kyung;Park, Jong Kwan
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • The aim of this study was to investigate the effect and action mechanism of quercetin on penile corpus cavernosum smooth muscle (PCCSM). PCCSM precontracted with phenylephrine (Phe) was treated with four different concentrations of quercetin ($10^{-7}$, $10^{-6}$, $10^{-5}$ and $10^{-4}M$). PCCSM were preincubated with N-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) to block nitric oxide synthase and guanylate cyclase, respectively. The changes in PCCSM tension were recorded, and cyclic nucleotides in the perfusate were measured by radioimmunoassay. The interactions of quercetin with phosphodiesterase type 5 inhibitors (PDE5-Is) such as sildenafil, udenafil and mirodenafil, were also evaluated. PCCSM relaxation induced by quercetin occurred in a concentrationdependent manner. The application of quercetin to PCCSM pre-treated with L-NAME and ODQ significantly inhibited the relaxation. Quercetin significantly increased cGMP in the perfusate. Furthermore, quercetin enhanced PDE5-Is-induced relaxation of PCCSM. Quercetin relaxed the PCCSM by activating the NO-cGMP signaling pathway, and it may be a therapeutic candidate or an alternative treatment for patients with erectile dysfunction who do not completely respond to PDE5-Is.

Imitation of Phosphoenolpyruvate to Oxaloacetate Pathway Regulation of Rumen Bacteria in Enteric Escherichia coli and Effect on C4 Metabolism (반추위 미생물이 가진 Phosphoenolpyruvate에서 Oxaloacetate 경로 조절기작의 대장균에서의 모사와 C4대사의 영향)

  • Kwon Yeong-Deok;Kwon Oh-Hee;Lee Heung-Shick;Kim Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2006
  • One of the fermentative metabolism of enteric Escherichia coli was imitated after rumen bacteria, which have high C4 metabolism. E. coli expresses phosphenolpyruvate carboxylase (PPC) for the pathway between phosphoenolpyruvate (PEP) and oxaloacetate (OAA) during glycolytic condition while expresses phosphoenolpyruvate carboxykinase (PCK) during gluconeogenic condition. In contrast to enteric E. coli, rumen bacteria express the PEP-OAA pathway only by PCK. To verify the effect of the regulation imitation on the C4 metabolism of E. coli, PPC-deficient E. coli strain with PCK expression in glycolytic condition was constructed. The PEP-OAA regulation modified E. coli strain increased 2.5-folds higher C4 metabolite than the wild type strain. The potential use of C4 metabolism by regulation control is discussed.

Molecular cloning and expression analysis of the first two key genes through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway from Pyropia haitanensis (Bangiales, Rhodophyta)

  • Du, Yu;Guan, Jian;Xu, Ruijun;Liu, Xin;Shen, Weijie;Ma, Yafeng;He, Yuan;Shen, Songdong
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.359-377
    • /
    • 2017
  • Pyropia haitanensis (T. J. Chang et B. F. Zheng) N. Kikuchi et M. Miyata is one of the most commercially useful macroalgae cultivated in southeastern China. In red algae, the biosynthesis of terpenoids through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway can produce a direct influence on the synthesis of many biologically important metabolites. In this study, two genes of cDNAs, 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR), which encoding the first two rate-limiting enzymes among MEP pathway were cloned from P. haitanensis. The cDNAs of P. haitanensis DXS (PhDXS) and DXR (PhDXR) both contained complete open reading frames encoding polypeptides of 764 and 426 amino acids residues, separately. The expression analysis showed that PhDXS was significant differently expressed between leafy thallus and conchocelis as PhDXR been non-significant. Additionally, expression of PhDXR and its downstream gene geranylgeranyl diphosphate synthase were both inhibited by fosmidomycin significantly. Meanwhile, we constructed types of phylogenetic trees through different algae and higher plants DXS and DXR encoding amino acid sequences, as a result we found tree clustering consequences basically in line with the "Cavalier-Smith endosymbiotic theory." Whereupon, we speculated that in red algae, there existed only complete MEP pathway to meet needs of terpenoids synthesis for themselves; Terpenoids synthesis of red algae derivatives through mevalonate pathway came from two or more times endosymbiosis of heterotrophic eukaryotic parasitifer. This study demonstrated that PhDXS and PhDXR could play significant roles in terpenoids biosynthesis at molecular levels. Meanwhile, as nuclear genes among MEP pathway, PhDXS and PhDXR could provide a new way of thinking to research the problem of chromalveolata biological evolution.