• Title/Summary/Keyword: $C_4$-precursors

Search Result 313, Processing Time 0.029 seconds

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries

  • Sung Joo, Hong;Seunghoon, Nam
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.445-453
    • /
    • 2022
  • SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.

Preparation and characterization of inexpensive submicron range inorganic microfiltration membranes

  • Nandi, B.K.;Das, B.;Uppaluri, R.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.121-137
    • /
    • 2010
  • This work presents inexpensive inorganic precursor formulations to yield submicron range symmetric ceramic microfiltration (MF) membranes whose average pore sizes were between 0.1 and $0.4{\mu}m$. Incidentally, the sintering temperature used in this work was about 800 to $950^{\circ}C$ instead of higher sintering temperatures ($1100^{\circ}C$) that are usually deployed for membrane fabrication. Thermogravimetric (TGA) and X-Ray diffraction (XRD) analysis were carried out to evaluate the effect of temperature on various phase transformations during sintering process. The effect of sintering temperature on structural integrity of the membrane as well as pore size distribution and average pore size were evaluated using scanning electron microscopy (SEM) analysis. The average pore sizes of the membranes were increased from 0.185 to $0.332{\mu}m$ with an increase in sintering temperature from 800 to $950^{\circ}C$. However, a subsequent reduction in membrane porosity (from 34.4 to 19.6%) was observed for these membranes. Permeation experiments with both water and air were carried out to evaluate various membrane morphological parameters such as hydraulic pore diameter, hydraulic permeability, air permeance and effective porosity. Later, the membrane prepared with a sintering temperature of $950^{\circ}C$ was tested for the treatment of synthetic oily waste water to verify its real time applicability. The membrane exhibited 98.8% oil rejection efficiency and $5.36{\times}10^{-6}\;m^3/m^2.s$ permeate flux after 60 minutes of experimental run at 68.95 kPa trans-membrane pressure and 250 mg/L oil concentration. Based on retail and bulk prices of the inorganic precursors, the membrane cost was estimated to be $220 /$m^2$ and $1.53 /$m^2$, respectively.

Optical Characteristics of Iron Silicide Films Prepared by Plasma CVD (Plasma CVD에 의해 제조된 Iron Silicide 박막의 광학적 특성)

  • Kim, Kyung-soo;Yoon, Yong-soo;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.343-348
    • /
    • 1999
  • The iron silicide films were prepared by chemical vapor deposition method using rf-plasma in variations of substrate temperature. rf-power, and ratio of $SiH_4$ and Fe-precursor. While iron silicide films are generally grown by ion beam synthesis (IBS) method of multi-step process, it is confirmed that iron silicide or $\beta$-phase consolidated $Fe_aSi_bC_cH_d$ was formed by one-step process in this study. The characteristics of films is variable because the different amounts of carbon and hydrogen was involved in the films as a function of dilute ratio of Fe-precursors and silane. It was shown that the different characteristics of films in carbon and hydrogen following the ratio of Fe-precursor and silane. The optical gap energy of films fabricated according to substrate temperature was invariant because active site brought in desorption of hydrogen was limiled. When rf-power was above 240 watt, the optical gap energy turned out to have high values because of dangling bonds increased by etching.

  • PDF

The Preparation and Characterization of Bismuth Layered Ferroelectric Thin Films by Sol-Gel Process (II. Dielectric Properties of Ferroelectric $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$ Thin Films Prepared by MOD Process) (솔 - 젤법을 이용한 Bismuth Layered Structure를 가진 강유진성 박막의 제조 및 특성평가에 관한 연구 (II. MOD법으로 제조한 강유전성 $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$ 박막의 유전특성))

  • 최무용;송석표;정병직;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • Ferroelectric $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$(x=0, 0.1, 0.2, 0.3) thin films were deposited on $Pt/SiO_2/Si$ substrate by MOD(Metalorganic Decomposition) process. Metal carboxylate and metal alkoxide were used as precursors, and 2-methoxyethanol, xylene as solvents. After spin coating, thin films were pre-annealed at $400^{\circ}C$, followed by RTA(Rapid Thermal Annealing) and final annealing at $800^{\circ}C$ in oxygen atmosphere. These procedures were repeated three times to obtain thin films with the thickness of $2000{\AA}$. To enhance the nucleation and growth of layered-perovskite phase, thin films were rapid-thermally annealed above $720^{\circ}C$ in oxygen atmosphere. As RTA temperature increased, fluorite phase was transformed to layered-perovskite phase. And the change of Nb contents affected dielectric / electrical properties and microstructure. The ferroelectric characteristics of $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$ thin film were Pr=8.67 $\mu{C}/cm^2$, Ec=62.4kV/cm and $I_{L}=1.4\times10^{-7}A/cm^2$ at the applied voltage of 5V, respectively.

  • PDF

Characteristics of $Cu_2ZnSnSe_4$ Thin Film Solar Absorber Prepared by PLD using Solid Target (광흡수층 적용을 위한 PLD용 $Cu_2ZnSnSe_4$ 타겟 제조와 증착 박막의 특성)

  • Jung, Woon-hwa;Rachmat, Adhi Wibowo;Kim, Kyoo-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.130-133
    • /
    • 2009
  • $Cu_2ZnSnSe_4$(CZTSe) is one of the promising materials for the solar cell due to its abundant availability in the nature. In this study, we report the fabrication of CZTSe thin film by Pulsed Laser Deposition(PLD) method using quaternary compound target on sodalime glass substrate. The quaternary CZTSe compound target was synthesized by solid state reaction method using elemental powders of Cu, Zn, Sn and Se. Powders were milled in high purity ethanol using zirconia ball with mixed size of 1 and 3 mm at the same proportions for 72 hours milling time. The structural, chemical and mechanical properties of the synthesized CZTSe powders were investigated prior to the deposition process. The CZTSe compound powder, and $500^{\circ}C$ of sintering temperature shows the best properties for PLD target. Results show that the as-deposited CZTSe thin films with the precursors by PLD have a composition near-stoichiometric.

  • PDF

Hydrogelation Process Variables in Crystallization of Zeolite (Zeolite 결정 성장에 미치는 Hydrogel화의 영향)

  • 서정권;이광석;이정민;정필조
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.575-582
    • /
    • 1989
  • The effects of raw material feeding procedures and gelation temperatures on zeolite synthesis are investigated. Thus, the synthesis of zeolite 4A from sodium aluminate and sodium silicate solutions is chosen as a model reaction, for which equi-molar hydrogelation is performed with variation of feeding procedures and gelation temperatures. The formation of crystal nuclei, often being referred to as precursors, is induced under different conditions, the variation being examined by means of viscosity and water contents. The final products of zeolite 4A are evaluated by XRD, SEM morphology, particle size analysis and cation exchange capacity. Evidence shows that the viscosity of the initial products and their water contents are markedly influenced by the feeding methods of the reactant materials and by the gelation temperature. Further, it is found that the gelation at an elevated temperatures near 7$0^{\circ}C$ can be made possible through modification of mixing procedures. This provides convenient means of controlling the particle size of the final products. In this regard, a continuous flow-type mixing technique is proposed, which is demonstrated to be superior to the conventional batch-type mixings. The significance of this finding may lie in savings of equipment as well as energy costs, especialy on a large scale commercialization of zeolite production.

  • PDF

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [II] EXPERIMENTAL RESULTS FROM DICHLOROPHENOLS (DCPs)

  • Ryu, Jae-Yong;Kim, Do-Hyong;Choi, Kum-Chan;Suh, Jeong-Min
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.232-240
    • /
    • 2006
  • Polychlorinated naphthalenes (PCNs) formed along with dibenzo-p-dioxin and dibenzofuran products in the slow combustion of dichlorophenols (DCPs) at $600^{\circ}C$ were identified. Each DCP reactant produced a unique set of PCN products. Major PCN congeners observed in the experiments were consistent with products predicted from a mechanism involving an intermediate formed by ortho-ortho carbon coupling of phenoxy radicals; polychlorinated dibenzofurans (PCDFs) are formed from the same interemediate. Tautomerization of the intermediate and $H_2O$ elimination produces PCDFs; alternatively, CO elimination to form dihydrofulvalene and fusion produces naphthalenes. Only trace amounts of tetrachloronaphthalene congeners were formed, suggesting that the preferred PCN formation pathways from chlorinated phenols involve loss of chlorine. 3,4-DCP produced the largest yields of PCDF and PCN products with two or more chlorine substituents. 2,6-DCP did not produce tri- or tetra-chlorinated PCDF or PCN congeners. It did produce 1,8-DCN, however, which could not be explained.

Role of Nitric Oxide in the Lovastatin-Induced Stimulation of Melanin Synthesis in B16 Melanoma Cells (B16 흑색종세포에서 로바스타틴에 의한 멜라닌 합성 촉진효과에 미치는 산화질소의 역할)

  • Lee, Yong Soo
    • YAKHAK HOEJI
    • /
    • v.57 no.6
    • /
    • pp.388-393
    • /
    • 2013
  • Previously, we have reported that lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, increased melanin synthesis through intracellular $Ca^{2+}$ release in B16 cells. In this study we investigated the possible involvement of nitric oxide (NO) in the mechanism of lovastatin-induced melanogenesis. Lovastatin elevated NO formation in a dose-dependent manner. Treatment with mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), precursors of cholesterol, did not significantly alter the lovastatin-induced NO production, suggesting that inhibition of cholesterol metabolism may not be involved in the mechanism of this action of lovastatin. Both NO formation and melanogenesis induced by lovastatin was significantly suppressed by treatment with $N^G$-nitro-L-arginine methyl ester (L-NAME) and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide (cPTIO), an inhibitor of NO synthase and a NO scavenger, respectively. The lovastatin-induced NO production was significantly affected not by EGTA, an extracellular $Ca^{2+}$ chelator, but by an intracellular $Ca^{2+}$ chelator (BAPTA/AM) and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8). Taken together, these results suggest that lovastatin may induce melanogenesis through NO formation mediated by intracellular $Ca^{2+}$ release in B16 cells. These results further suggest that lovastatin may be a good candidate for the therapeutic application of various hypopigmentation disorders.

Synthesis of High-Aspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics

  • Zhao, Wei;E, Lei;Ya, Jing;Liu, Zhifeng;Zhou, Heping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2305-2308
    • /
    • 2012
  • Perovskite structured barium titanate particles ($BaTiO_3$) platelets were synthesized by molten salt synthesis and topochemical microcrystal conversion. As the precursors of $BaTiO_3$, plate-like $BaBi_4Ti_4O_{15}$ particles were first synthesized by the reaction of $Bi_4Ti_3O_{12}$, $BaCO_3$, and $TiO_2$ at $1080^{\circ}C$ for 3 h in $BaCl_2$-KCl molten salt. After the topochemical reactions, layer-structured $BaBi_4Ti_4O_{15}$ particles transformed to the perovskite $BaTiO_3$ platelets. $BaTiO_3$ particles with thickness of approximately $0.5{\mu}m$ and a length of $10-15{\mu}m$ retained the morphology feature of the $BaBi_4Ti_4O_{15}$ precursor. For <001> $Pb(Mg_{1/3}Nb_{2/3})O_3-32.5PbTiO_3$ (PMNT)-5 wt % PbO piezoelectric ceramics textured with 5 vol % of $BaTiO_3$ templates, the Lotgering factor reached 0.82, and $d_{33}$ was 870 pC/N.

Preparation of Hafnium Oxide Thin Films grown by Atomic Layer Deposition (원자층 증착법으로 성장한 HfO2 박막의 제조)

  • Kim Hie-Chul;Kim Min-Wan;Kim Hyung-Su;Kim Hyug-Jong;Sohn Woo-Keun;Jeong Bong-Kyo;Kim Suk-Whan;Lee Sang-Woo;Choi Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • The growth of hafnium oxide thin films by atomic layer deposition was investigated in the temperature range of $175-350^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors. A self-limiting growth of $0.6\AA/cycle$ was achieved at the substrate temperature of $240-280^{\circ}C$. The films were amorphous and very smooth (0.76-0.80 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. X-ray photoelectron spectroscopy analysis showed that the films grown at $300^{\circ}C$ was almost stoichiometric. Electrical measurements performed on $MoW/HfO_2$(20 nm)/Si MOS structures exhibited high dielectric constant$(\~17)$ and a remarkably low leakage current density of at an applied field of $1.5-6.2\times10^{-7}A/cm^2$ MV/cm, probably due to the stoichiometry of the films.