• Title/Summary/Keyword: $CV_{12}$

Search Result 602, Processing Time 0.025 seconds

Studies on the Production of Alcohol from Woods (목재(木材)를 이용(利用)한 Alcohol 생산(生産)에 관(關)한 연구(硏究))

  • Cheong, Jin Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.59 no.1
    • /
    • pp.67-91
    • /
    • 1983
  • In order to examine the alcohol production from softwoods (Pinus densiflora Sieb. et Zucc., Pinus rigida Miller, Larix leptolepis Gordon) and hardwoods (Alnus japonica Steud., Castanea crenata Sieb. et Zucc. Populus euramericana CV 214), chemical compositions were analyzed and conditions of acid hydrolysis with wood meals were established. Also strains which could remarkably decompose the cellulose were identified, and conditions of cellulase production of strains, characteristics of cellulase, and alcohol fermentation were examined. The results were summarized as follows. 1) In acid hydrolysis of wood, the high yield of reducing sugars was shown from 1.0% to 2.0% of hydrochloric acid and 2.0% of sulfuric acid. The highest yield was produced 23.4% at wood meals of Alnus japonica treated with 1.0% of hydrochloric acid. 2) The effect of raising the hydrolysis was good at $1.5kg/cm^2$, 30 times (acid/wood meal), and 45 min in treating hydrochloric acid and 30 min in treating sulfuric acid. 3) The pretreatments with concentrated sulfuric acid were more effective concentration ranged from 50% to 60% than that with hydrochloric acid and its concentration ranged from 50% to 60%. 4) The quantative analysis of sugar composition of acid hydrolysates revealed that glucose and arabinose were assayed 137.78mg and 68.24mg with Pinus densiflora, and 102.22mg and 65.89mg with Alnus janonica, respectively. Also xylose and galactose were derived. 5) The two strains of yeast which showed remarkably high alcohol productivity were Saccharomyces cerevisiae JAFM 101 and Sacch. cerevisiae var. ellipsoldeus JAFM 125. 6) The production of alcohol and the growth of yeasts were effective with the neutralization of acid hydrolysates by $CaCO_3$ and NaOH. Production of alcohol was excellent in being fermented between pH 4.5-5.5 at $30^{\circ}C$ and growth of yeasts between pH 5.0-6.0 at $24^{\circ}C$. 7) The production of alcohol was effective with the addition of 0.02% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, 0.02% $MnCl_2$. Growth of yeasts was effective with 0.04-0.06% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.2% $K_2HPO_4$ and $K_3PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, and 0.002% NaCl. 8) Among various vitamins, the production of alcohol was effective with the addition to pyridoxine and riboflavin, and the growth of yeasts with the addition to thiamin, Ca-pantothenate, and biotin. The production of aocohol was increased in 0.1% concentration of tannin and furfural, but mas decreased in above concentration. 9) In 100ml of fermented solution, alcohol and yeast were produced 2.201-2.275ml and 84-114mg for wood meals of Pinus densiflora, and 2.075-2.125ml and 104-128mg for that of Alnus japonica. Residual sugars were 0.55-0.60g and 0.60-0.65g for wood meals of Pinus densiflora and Alnus japonica, respectively, and pH varied from 3.3 to 3.6. 10) A strain of Trichoderma viride JJK. 107 was selected and identified as its having the highest activity of decomposing cellulose. 11) The highest cellulase production was good when CMCase incubated for 5 days at pH 6.0, $30^{\circ}C$ and xylanase at pH 5.0, $35^{\circ}C$. The optimum conditions of cellulase activity were proper in case of CMCase at pH 4.5, $50^{\circ}C$ and xylanase at pH 4.5, $40^{\circ}C$. 12) In fermentation with enzymatic hydrolysates, the peracetic acid treatment for delignification showed the best yields of alcohol and its ratio was effective with the addition of about 10 times. 13) The production of alcohol was excellent when wood meals and Koji of wheat bran was mixed with 10 to 8 and the 10g of wood meals of Pinus densiflora produced 2.01-2.14ml of alcohol and Alnus japonica 2.11-2.20ml.

  • PDF

Mineral Nutrition of the Field-Grown Rice Plant -[I] Recovery of Fertilizer Nitrogen, Phosphorus and Potassium in Relation to Nutrient Uptake, Grain and Dry Matter Yield- (포장재배(圃場栽培) 수도(水稻)의 무기영양(無機營養) -[I] 삼요소이용률(三要素利用率)과 양분흡수량(養分吸收量), 수량(收量) 및 건물생산량(乾物生産量)과(乾物生産量)의 관계(關係)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.99-111
    • /
    • 1973
  • Percentage recovery or fertilizer nitrogen, phosphorus and potassium by rice plant(Oriza sativa L.) were investigated at 8, 10, 12, 14 kg/10a of N, 6 kg of $P_2O_5$ and 8 kg of $K_2O$ application level in 1967 (51 places) and 1968 (32 places). Two types of nutrient contribution for the yield, that is, P type in which phosphorus firstly increases silicate uptake and secondly silicate increases nitrogen uptake, and K type in which potassium firstly increases P uptake and secondly P increases nitrogen uptake were postulated according to the following results from the correlation analyses (linear) between percentage recovery of fertilizer nutrient and grain or dry matter yields and nutrient uptake. 1. Percentage frequency of minus or zero recovery occurrence was 4% in nitrogen, 48% in phosphorus and 38% in potassium. The frequency distribution of percentage recovery appeared as a normal distribution curve with maximum at 30 to 40 recovery class in nitrogen, but appeared as a show distribution with maximum at below zero class in phosphorus and potassium. 2. Percentage recovery (including only above zero) was 33 in N (above 10kg/10a), 27 in P, 40 in K in 1967 and 40 in N, 20 in P, 46 in Kin 1968. Mean percentage recovery of two years including zero for zero or below zero was 33 in N, 13 in P and 27 in K. 3. Standard deviation of percentage recovery was greater than percentage recovery in P and K and annual variation of CV (coefficient of variation) was greatest in P. 4. The frequency of significant correlation between percentage recovery and grain or dry matter yield was highest in N and lowest in P. Percentage recovery of nitrogen at 10 kg level has significant correlation only with percentage recovery of P in 1967 and only with that of potassium in 1968. 5. The correlation between percentage recovery and dry matter yield of all treatments showed only significant in P in 1967, and only significant in K in 1968, Negative correlation coefficients between percentage recovery and grain or dry matter yield of no or minus fertilizer plots were shown only in K in 1967 and only in P in 1968 indicating that phosphorus fertilizer gave a distinct positive role in 1967 but somewhat' negative role in 1968 while potassium fertilizer worked positively in 1968 but somewhat negatively in 1967. 6. The correlation between percentage recovery of nutrient and grain yield showed similar tendency as with dry matter yield but lower coefficients. Thus the role of nutrients was more precisely expressed through dry matter yield. 7. Percentage recovery of N very frequently had significant correlation with nitrogen uptake of nitrogen applied plot, and significant negative correlation with nitrogen uptake of minus nitrogen plot, and less frequently had significant correlation with P, K and Si uptake of nitrogen applied plot. 8. Percentage recovery of P had significant correlation with Si uptake of all treatments and with N uptake of all treatments except minus phosphorus plot in 1967 indicating that phosphorus application firstly increases Si uptake and secondly silicate increases nitrogen uptake. Percentage recovery of P also frequently had significant correlation with P or K uptake of nitrogen applied plot. 9. Percentage recovery of K had significant correlation with P uptake of all treatments, N uptake of all treatments except minus phosphorus plot, and significant negative correlation with K uptake of minus K plot and with Si uptake of no fertilizer plot or the highest N applied plot in 1968, and negative correlation coefficient with P uptake of no fertilizer or minus nutrient plot in 1967. Percentage recovery of K had higher correlation coefficients with dry matter yield or grain yield than with K uptake. The above facts suggest that K application firstly increases P uptake and secondly phosphorus increases nitrogen uptake for dry matter yied. 10. Percentage recovery of N had significant higher correlation coefficient with grain yield or dry matter yield of minus K plot than with those of minus phosphorus plot, and had higher with those of fertilizer plot than with those of minus K plot. Similar tendency was observed between N uptake and percentage recovery of N among the above treatments. Percentage recovery of K had negative correlation coefficient with grain or-dry matter yield of no fertilizer plot or minus nutrient plot. These facts reveal that phosphorus increases nitrogen uptake and when phosphorus or nitrogen is insufficient potassium competatively inhibits nitrogen uptake. 11. Percentage recovery of N, Pand K had significant negative correlation with relative dry matter yield of minus phosphorus plot (yield of minus plot x 100/yield of complete plot; in 1967 and with relative grain yield of minus K plot in 1968. These results suggest that phosphorus affects tillering or vegetative phase more while potassium affects grain formation or Reproductive phase more, and that clearly show the annual difference of P and K fertilizer effect according to the weather. 12. The correlation between percentage recovery of fertilizer and the relative yield of minus nutrient plat or that of no fertilizer plot to that of minus nutrient plot indicated that nitrogen is the most effective factor for the production even in the minus P or K plot. 13. From the above facts it could be concluded that about 40 to 50 percen of paddy fields do rot require P or K fertilizer and even in the case of need the application amount should be greatly different according to field and weather of the year, especially in phosphorus.

  • PDF