• Title/Summary/Keyword: $CR_n$

Search Result 1,522, Processing Time 0.032 seconds

Analysis of Commercial Organic Compost Manufactured with Livestock Manure (국내 유통중인 가축분퇴비의 품질 특성)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Park, Seong-Jin;Lee, Chang-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • The contents of total nitrogen(T-N), phosphate($T-P_2O_5$), and potash($T-K_2O$) are important factors to determine the application rate of the livestock compost to prevent nutrients accumulation and maintain their appropriate levels in arable lands. The concentrations of nutrient, organic matter, salt, water content, heavy metal in livestock compost in circulation were investigated with 659 samples from 2016 to 2017. In order to investigate the fluctuation nutrient contents of livestock composts with the same product name, 19 samples were collected and analyzed T-N, and $T-P_2O_5$, and $T-K_2O$ concentration during two years. The mean levels of T-N, $T-P_2O_5$, and $T-K_2O$ in livestock composts of from 2016 to 2017 were 1.73%, 1.88%, and 1.66%, respectively. The average contents of organic matter, water, and salt were 38.9%, 40.9%, and 1.2%, respectively. There were found that the maximum concentrations of Cr, Ni, Cu, and Zn in some livestock composts were exceeded the criteria of the official standard of commercial fertilizer. The maximum variation coefficient of T-N, $T-P_2O_5$ and $T-K_2O$ content of livestock composts was found to be 24%, 27%, and 50% on average, respectively. In order to manage the nutrients in agricultural soils, it will be reasonable that the error range of T-N and $T-P_2O_5$ content in livestock composts should be recommended to be 27% in mean as variation coefficient in case of displaying the nutrient element in liverstock compost.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea (옹진군 어장관리해역의 수질 및 퇴적물 환경 특성)

  • Kim, Sun-Young;Kim, Hyung-Chul;Lee, Won-Chan;Hwang, Dong-Woon;Hong, Sok-Jin;Kim, Jeong-Bae;Cho, Yoon-Sik;Kim, Chung-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.570-581
    • /
    • 2013
  • To improve productivity of aquaculture animals with management of culturing grounds, survey of mariculture management area in Ongjin-gun about water quality and sedimentary environment had been conducted on June, August and November in 2011. Water temperature in surface and bottom waters ranged from 9.49 to $24.14^{\circ}C$. Salinity and dissolved oxygen concentrations were in the range of 23.19~31.49 and 5.48~9.36 mg/L, respectively, depending on the variation of water temperature. The average concentration of COD was 1.57 mg/L and the concentrations of DIN and DIP showed entirely low level. As the result of grain size analysis, sand(56.66 %) and silt(34.60 %) were predominated. The Mz of sediment showed a variation of 2.59 to $6.62{\O}$ and sorting appeared to be poorly sorted. The concentrations of COD and IL in surface sediment ranged from 1.00 to $11.03mg/g{\cdot}dry$ and 0.72 to 5.29 %, respectively, which showed relatively good positive correlations. On the environmental assessment of trace metals in surface sediment, geoaccumulation index ($I_{geo}$) class indicated that sediments were not contaminated by most of metallic elements except Cr and As. Our result implies that this study area showed good water quality and sediments were not polluted by organic matters and metallic elements.

Measurement and Assessment of Absolute Quantification from in Vitro Canine Brain Metabolites Using 500 MHz Proton Nuclear Magnetic Resonance Spectroscopy: Preliminary Results (개의 뇌 조직로부터 추출한 대사물질의 절대농도 측정 및 평가: 500 MHz 고자장 핵자기공명분광법을 이용한 예비연구결과)

  • Woo, Dong-Cheol;Bang, Eun-Jung;Choi, Chi-Bong;Lee, Sung-Ho;Kim, Sang-Soo;Rhim, Hyang-Shuk;Kim, Hwi-Yool;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • The purpose of this study was to confirm the exactitude of in vitro nuclear magnetic resonance spectroscopy(NMRS) and to complement the defect of in vivo NMRS. It has been difficult to understand the metabolism of a cerebellum using in vivo NMRS owing to the generated inhomogeneity of magnetic fields (B0 and B1 field) by the complexity of the cerebellum structure. Thus, this study tried to more exactly analyze the metabolism of a canine cerebellum using the cell extraction and high resolution NMRS. In order to conduct the absolute metabolic quantification in a canine cerebellum, the spectrum of our phantom included in various brain metabolites (i.e., NAA, Cr, Cho, Ins, Lac, GABA, Glu, Gln, Tau and Ala) was obtained. The canine cerebellum tissue was extracted using the methanol-chloroform water extraction (M/C extraction) and one group was filtered and the other group was not under extract processing. Finally, NMRS of a phantom solution and two extract solution (90% D2O) was progressed using a 500MHz (11.4 T) NMR machine. Filtering a solution of the tissue extract increased the signal to noise ratio (SNR). The metabolic concentrations of a canine cerebellum were more close to rat’s metabolic concentration than human’s metabolic concentration. The present study demonstrates the absolute quantification technique in vitro high resolution NMRS with tissue extraction as the method to accurately measure metabolite concentration.

  • PDF

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF

Chemical Properties and Heavy Metal Content of Forest Soils around Abandoned Coal Mine Lands in the Mungyeong Area (문경지역 폐탄광지 주변 산림토양의 화학적 성질 및 중금속 함량)

  • Min Jae-Gee;Park Eun-Hee;Moon Hyun-Shik;Kim Jong-Kab
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.265-273
    • /
    • 2005
  • Chemical properties and heavy metal concentrations of forest soils of four abandoned coal mine lands affected by coal mining activities in the Mungyeong area were investigated to provide basic information for revegetation of abandoned coal mine lands. Soil pH in abandoned coal mine lands ranged from 5.30 to 6.76 it in the control site was 5.23. Contents of organic matter and total N in abandoned coal mine lands were $4.46\~7.19\%\;and\;0.07\~0.15\%$, respectively. Available P contents were 6.54 for A (Samchang), 6.52 for B (Bongmyeong),3.94 fur C (Kabjung), 5.45 mg/kg for D (Danbong coal mine land) and 5.25 mg/kg for the control site, which had a positive correlation with soil pH. Contents of exchangeable Ca, Mg, K and Na in abandoned coal mile lands averaged 196.1, 88.7, 88.2 and $10.2cmol^+/kg$, with a range of $132.1\~242.1,\;24.2\~138.\; 64.9\~120.8\;and\;8\~12.2cmol^+/kg$, respectively. Those of the control site were 192.8, 95.8, 104 and $21.2 cmol^+/kg$, respectively. Heavy metals such as Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn of forest soil in abandoned coal mine lands have a larger content than those of the control site. Al, Mn and fb content was especially high in abandoned coal mine lands. The Al content of forest soil in abandoned coal mine lands ranged from 397 to 917 ppm, which was considered to be high enough to inhibit tree growth. Therefore, it is suggested that soils of abandoned coal mine lands contaminated by mining activities need to be properly treated for remediation of environmental problems.

Element Dispersion and Wall-rock Alteration from Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상의 모암변질과 원소분산 특성 연구)

  • Yoo, Bong-Chul;Chi, Se-Jung;Lee, Gil-Jae;Lee, Jong-Kil;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.713-726
    • /
    • 2007
  • The Daebong deposit consists of gold-silver-bearing mesothermal massive quartz veins which fill fractures along fault zones($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$) within banded gneiss or granitic gneiss of Precambrian Gyeonggi massif. Ore mineralization of the deposit is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing and transparent quartz vein(stage II) which is separated by a major faulting event. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and includes mainly sericite, quartz, and minor illite, carbonates and epidote. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.36 to 0.59($0.51{\pm}0.10$) and 0.66 to 0.73($0.70{\pm}0.02$), and belong to muscovite-petzite series and brunsvigite, respectively. Calculated $Al_{IV}-Fe/(Fe+Mg)$ diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH){_6}=0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}= 9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}=5.61E-07{\sim}1.79E-05$. It suggest that chlorite from the Daebong deposit is iron-rich chlorite formed due to decreasing temperature from $T>450^{\circ}C$. Calculated $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ and pH values during wall-rock alteration are $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C),\;5.4{\sim}6.5(400^{\circ}C)\;and\;5.1{\sim}5.5(350^{\circ}C)$, respectively. Gain elements (enrichment elements) during wallrock alteration are $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr, Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta and Sb. Elements(Sr, V, Pb, Zn, As, Sb) represent a potentially tools for exploration in mesothermal and epithermal gold-silver deposits.

Photocurrent study on the splitting of the valence band and growth of MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 MgGa2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Kim, Hyejeong;Park, Hwangseuk;Bang, Jinju;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.283-290
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $MgGa_2Se_4$ have been estimated to be 190.6 meV and 118.8 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $MgGa_2Se_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$exciton for n = 1 and $C_{27}-exciton$ peaks for n = 27.

Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.217-224
    • /
    • 2008
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.

A comparative study on the fracture behavior of zironia, glass infiltrated alumina and PFM full crown system (지르코니아, 유리침투알루미나 및 PFM 전부관 시스템의 파절 경향에 관한 비교연구)

  • Lee, Sang-Hyeok;Ahn, Jin-Soo;Kim, Myung-Ho;Lim, Bum-Soon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Purpose: The purpose of this study was to compare the fracture behavior of Zironia, glass infiltrated Alumina and PFM full crown system. Materials and methods: Fifteen crowns for each of 3 experimental groups (Zironia, glass infiltrated Alumina and PFM full crown) were made by the conventional method. The crowns mounted on the testing jig were inclined in 30 degrees to the long axis of the tooth and the universal testing machine was used to measure the fracture strength. Results: 1. The mean fracture strengths were $588.3{\pm}49.6MPa$ for zirconia system, $569.1{\pm}61.8MPa$ for PFM system and $551.0{\pm}76.5MPa$ for glass-infiltrated alumina system (P>.05). 2. The mean shear bond strengths were $25.5{\pm}5.6MPa$ for zirconia system, $38.9{\pm}5.0MPa$ for Ni-Cr alloy system and $39.4{\pm}5.1MPa$ for glass-infiltrated alumina system. 3. The chemical bonding was observed at interfaces between PFM or glass-infiltrated alumina and veneering porcelain, however, no chemical bonding was observed at interface between zirconia and veneering porcelain. Conclusion: With the study, the fracture strengths of PFM crown system had a higher fracture strength than conventional zirconia system crown and glass-infiltrated alumina crowns. and than the shear bond strengths glass-infiltrated alumina system had a higher shear bond strength than conventional PFM system and zirconia system.