• Title/Summary/Keyword: $CO_2$reduction

Search Result 2,961, Processing Time 0.035 seconds

Analysis of Carbonation Reduction Coefficient and CO2 uptakes under Finishing Materials (표면마감 조건에 따른 탄산화감소계수 및 CO2 흡수량 산정)

  • Song, Hun;Shin, Hyeon-UK;Chu, Yong-Sik;Lee, Jong-Kyu;Cho, Hyung-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.215-216
    • /
    • 2012
  • Emissions of CO2 occur during the production of cement manufacturing process. During the production of clinker, limestone is mainly calcium carbonate, is heated to produce lime and CO2 as a by-product. It has a major problem, CO2 uptake is not considered in concrete carbonation, just focus in CO2 emission. This study is to develop a simulation model for CO2 uptakes in concrete structures based on carbonation reduction coefficient considering finishing materials. CO2 uptakes unit of concrete cubic meter is calculated by CO2 emissions unit of concrete materials and usage of concrete materials in mix proportion. From the simulation result, CO2 uptake ratios is 2.04 percent in carbonation models of concrete structure during 40 years.

  • PDF

Structural Performance and CO2 Reduction Evaluation of the Ultra simple Wide-shaped section Beam-to-Column Weak Axis Connection (초간편 H형강 기둥-보 약축접합부의 구조성능 및 CO2 저감량 평가)

  • Kim, Sang-Seup;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.615-627
    • /
    • 2011
  • There have been few researches on the connection technology for steel structures, so the research outputs and the outcome of the technology development are still insufficient. The bracket-type connection should be improved for efficient constructability and $CO_2$ reduction. It should be replaced by a new type of weak-axis connection that has better structural performance and less $CO_2$ emission. Since the structural performance and safety of the new type of weak-axis connection must first be verified, however, a study on $CO_2$ reduction will be conducted. Therefore, this study looked into the structural performance of the bracket-type details, standard details, and ultra-simple details. It evaluated the requirements for connection materials and $CO_2$ emission. It was found that the ultra-simple weak-axis connection has thebest structural performance and the least $CO_2$ emissions, so it is deemed capable of replacing the bracket-type weak-axis connection.

Prediction of the Carbon Dioxide Emission Change Resulting from the Changes in Bovine Meat Consumption Behavior in Korea (우리나라 쇠고기 소비 행태 변화에 의한 이산화탄소 배출 변화량 예측)

  • Yeo, Min Ju;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.356-367
    • /
    • 2015
  • A consumption based study on the carbon dioxide ($CO_2$) emission change due to the changes in the bovine meat consumption behavior in Korea was carried out. It was found that if the consumption of bovine meat be reduced by half, the reduction amount of $CO_2$ emissions be over 0.8 $MtCO_2e$ in all senarios in 2023. This amount is equivalent to over 50% of the greenhouse gases (GHGs) emission reduction target in agriculture and forestry, and fishery, a significant reduction. It was also found that the $CO_2$ emission reduction amount in consumption-based approach was the largest when the consumption of the imported bovine meat be reduced, though the difference was not that large.

Carbothermal Reduction of Spray Dried Titanium-Cobalt-Oxygen Based Oxide Powder by Solid Carbon (분무건조법에 의해 제조된 Ti-Co-O계 산화물 분말의 고체 탄소에 의한 환원/침탄)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • In the present study, the focus is on the analysis of carbothermal reduction of the titanium-cobalt-oxygen based oxide powder by solid carbon for the optimizing synthesis process of ultra fined TiC/Co composite powder. The titanium-cobalt-oxygen based oxide powder was prepared by the combination of the spray drying and desalting processes using the titanium dioxide powder and cobalt nitrate as the raw materials. The titanium-cobalt-oxygen based oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixture during carbothermal reduction were analysed using XRD and TGA. The synthesized titanium-cobalt-oxygen based oxide powder has a mixture of $TiO_2$ and $CoTiO_3$. This oxide powder was transformed to a mixed state of titanium car-bide and cobalt by solid carbon through four steps of carbothermal reduction steps with increasing temperature; reduction of $CoTiO_3$ to $TiO_2$ and Co, reduction of $TiO_2$, to the magneli phase($Ti_nO_{2n-1}$, n>3), reduction of the mag-neli phase($Ti_nO_{2n-1}$, n>3) to the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases, and reduction and carburization of the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases to titanium carbide.

An Experimental Study on the Ground Source Heat Pump System for Heating Economic Efficiency and Reduction Amount of $CO_2$ (지열 시스템의 난방 경제성 및 $CO_2$ 절감 실증 연구)

  • Nam, Leem-Woo;Paek, Gi-Dong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.25-30
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. This study describes thermal performance of heating demonstration system using close-loop ground source heat pump installed at Korean minjok leadership academy. The results of the experimental study, it retrieve the investment cost for 3years 8months and reduction amount of $CO_2$are 293,900 $kgCO_2$.

  • PDF

The Electrocatalytic Reduction of Oxygen by Bis-Cobalt Phenylporphyrins in Various pH Solutions (여러 가지 pH 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook Choi;Ki-Hyung Chjo;Jong-Ki Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.735-743
    • /
    • 1993
  • The electrocatalytic reduction of oxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylprophyrins in various pH solutions. Oxygen reduction catalyzed by the monomeric porphyrin Co(Ⅱ)-TPP mainly occurs through the 2e$^-$ reduction pathway resulting in the formation of hydrogen peroxide whereas electrocatalytic process carried out 4e$^-$ reduction pathway of oxygen to H$_2$O at the electrodes coated with cofacial bis-cobalt phenylporphyrins in acidic solution. The electrocatalytic reduction of oxygen is irreversible and diffusion controlled. The reduction potentials of oxygen in various pH solutions have a straight line from pH 4 to pH 13, but level off in strong acidic solution. The reduction potentials of oxygen shift to positive potential more 400 mV at the electrode coated with monomer Co-TPP compound than bare glassy carbon electrode while 750 mV at the electrode coated with dimer Co-TPP compound.

  • PDF

Facile Synthesis of WCu-C/N for Effective Catalyst toward Electrochemical Reduction of CO2 to CO

  • Kai Chen;Zeda Meng;Yao Liu;Yilei Sun;Yuan Liang;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.9
    • /
    • pp.409-421
    • /
    • 2024
  • Among the products of the electrocatalytic reduction of carbon dioxide (CO2RR), CO is currently the most valuable product for industrial applications. However, poor stability is a significant obstacle to CO2RR. Therefore, we synthesized a series of bimetallic organic framework materials containing different ratios of tungsten to copper using a hydrothermal method and used them as precursors. The precursors were then subjected to pyrolysis at 800 ℃ under argon gas, and the M-N bimetallic sites were formed after 2 h. Loose porous structures favorable for electrocatalytic reactions were finally obtained. The material could operate at lower reduction potentials than existing catalysts and obtained higher Faraday efficiencies than comparable catalysts. Of these, the current density of WCu-C/N (W:Cu = 3:1) could be stabilized at 7.9 mA·cm-2 and the FE of CO reached 94 % at a hydrogen electrode potential of -0.6 V (V vs. RHE). The novel materials made with a two-step process helped to improve the stability and selectivity of the electrocatalytic reduction of CO2 to CO, which will help to promote the commercial application of this technology.

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration (g-C3N4 도입에 따른 다공성 Au 전극의 전기화학적 이산화탄소 환원 특성)

  • Jiwon Heo;Chaewon Seong;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.78-84
    • /
    • 2024
  • The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4-modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Econometric Estimation of the Climate Change Policy Effect in the U.S. Transportation Sector

  • Choi, Jaesung
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Over the past centuries, industrialization in developed and developing countries has had a negative impact on global warming, releasing $CO_2$ emissions into the Earth's atmosphere. In recent years, the transportation sector, which emits one-third of total $CO_2$ emissions in the United States, has adapted by implementing a climate change action plan to reduce $CO_2$ emissions. Having an environmental policy might be an essential factor in mitigating the man-made global warming threats to protect public health and the coexistent needs of current and future generations; however, to my best knowledge, no research has been conducted in such a context with appropriate statistical validation process to evaluate the effects of climate change policy on $CO_2$ emission reduction in recent years in the U.S. transportation. The empirical findings using an entity fixed-effects model with valid statistical tests show the positive effects of climate change policy on $CO_2$ emission reduction in a state. With all the 49 states joining the climate change action plans, the U.S. transportation sector is expected to reduce its $CO_2$ emissions by 20.2 MMT per year, and for the next 10 years, the cumulated $CO_2$ emission reduction is projected to reach 202.3 MMT, which is almost equivalent to the $CO_2$ emissions from the transportation sector produced in 2012 by California, the largest $CO_2$ emission state in the nation.