• Title/Summary/Keyword: $CO_2$fixation

Search Result 179, Processing Time 0.032 seconds

Biological Co2 Fixation to Antioxidant Carotenoids by Photosynthesis Using the Green Microalga Haematococcus pluvialis (광합성 녹색 미세조류 Haematococcus pluvialis를 이용한 이산화탄소 고정화 및 항산화성 카로티노이드 생산)

  • Kang, Chang Duk;Park, Tai Hyun;Sim, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • As one of the $CO_2$ reduction strategies, a biological method was proposed to convert $CO_2$ to useful biomass with antioxidant carotenoids by photosynthetic microorganisms. One of the photoautotrophs, Haematococcus pluvialis is a freshwater green microalga and accumulates the secondary carotenoid astaxanthin during induction of green vegetative cells to red cyst cells. In this study, $CO_2$ fixation and astaxanthin production using H. pluvialis was conducted by photoautotrophic culture in the $CO_2$ supplemented photo-incubator. Maximum growth rate of H. pluvialis was obtained at a 5% $CO_2$ environment on basic N and P conditions of NIES-C medium. The photoautotrophic induction consisted of 5% $CO_2$ supply and high light illumination promoted astaxanthin synthesis in H. pluvialis, yielding an astaxanthin productivity of $9.6mg/L{\cdot}day$ and a $CO_2$ conversion rate of $27.8mg/L{\cdot}day$ to astaxanthin. From the results the sequential photoautotrophic culture and induction process using H. pluvialis is expecting an alternative $CO_2$ reduction technology with a function of valuable biosubstance production.

Analysis of CO2 Fixation Capacity in Leaves of Ten Species in the Family Fagaceae (제주도 자생 참나무과 식물의 대기 중 CO2 흡수 능력의 비교분석)

  • Oh, Soon-Ja;Shin, Chang-Hoon;Kim, Chul-Soo;Kang, Hee-Suk;Kang, Kyeng-Min;Yang, Yun-Hi;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.89-96
    • /
    • 2012
  • The rate of photosynthesis (A) of leaves from 10 plant species (6 evergreen and 4 deciduous) of the family Fagaceae was measured using a portable photosynthesis analyzer, to examine which species take up $CO_2$ most efficiently. Of the evergreen species, the photosynthetic rate of Castanopsis cuspidata var. sieboldii was highest, and remained above 82.1~106.4 ${\mu}mol\;kg^{-1}s^{-1}$ from July to November. Of the deciduous species, the photosynthetic rate of Quercus acutissima was higher than that of the other three species, and remained high at 83.5~116.6 ${\mu}mol\;kg^{-1}s^{-1}$ from September to November. The photosynthetic rate of the 10 species was positively correlated with stomatal conductance (gs) and transpiration rate (E). However, there was no correlation between photosynthetic rate and intercellular $CO_2$ concentration ($C_i$), although there was a positive correlation just in three species (Q. gilva, Q. acutissima and Q. glauca). These results suggest that the $CO_2$ fixation capacity of C. cuspidata var. sieboldii, an evergreen species, and Q. acutissima, a deciduous species, is significantly higher than that of the other species examined, and that photosynthesis is regulated by both stomatal conductance and transpiration. Therefore, C. cuspidata var. sieboldii and Q. acutissima may be valuable for the evaluation of carbon uptake in urban green spaces as well as in afforested areas.

Growth, Photosynthesis and Zinc Elimination Capacity of a Sorghum-Sudangrass Hybrid under Zinc Stress (고농도 아연 조건에서 수수-수단그라스 교잡종의 생장, 광합성 및 아연 제거능)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1143-1153
    • /
    • 2016
  • Plant biomass, photosystem II (PSII) photochemical activity, photosynthetic function, and zinc (Zn) accumulation were investigated in a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense) exposed to various Zn concentrations to determine the elimination capacity of Zn from soils. Plant growth and biomass of the sorghum-sudangrass hybrid decreased with increasing Zn concentration. Symptoms of Zn toxicity, i.e., withering and discoloration of old leaves, were found at Zn concentrations over 800 ppm. PSII photochemical activity, as indicated by the values of $F_v/F_m$ and $F_v/F_o$, decreased significantly three days after exposure to Zn concentrations of 800 ppm or more. Photosynthetic $CO_2$ fixation rate (A) was high between Zn concentrations of 100-200 ppm ($22.5{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$), but it declined as Zn concentration increased. At Zn concentrations of 800 and 1600 ppm, A was 14.1 and $1.8{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The patterns of stomatal conductance ($g_s$), transpiration rate (E), and water use efficiency (WUE) were all similar to that of photosynthetic $CO_2$ fixation rate, except for dark respiration ($R_d$), which showed an opposite pattern. Zn was accumulated in both above- and below-ground parts of plants, but was more in the below-ground parts. Magnesium (Mg) and iron (Fe) concentrations were significantly low in the leaves of plants, and symptoms of Mg or Fe deficiency, such as a decrease in the SPAD value, were found when plants were treated with Zn concentrations above 800 ppm. These results suggest that the sorghum-sudangrass hybrid is able to accumulate Zn to high level in plant body and eliminate it with its rapid growth and high biomass yield.

Studies on the CO2 Fixation Patterns Following the Chloroplast Development in Maize Leaves (옥수수엽의 엽록체발달에 따른 CO2 고정양상에 관한 연구)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.22 no.3
    • /
    • pp.55-57
    • /
    • 1979
  • These studies were undertaken to determine the $CO^2$fixation patterns following the chloroplast development in maize leaves. At the early stage of chloroplast development $^{14}C$ was incorporated into aspartate (41%) and malate (22%) respectively. Whereas the incorporation of $^{14}C$ into malate was higher than that of aspartate as chloroplast developed. Activity of NADPH-dependent malate dehydrogenase was increased throughout chloroplast development, but that of aspartate transaminase was not. Much incorporation of $^{14}C$ into aspartate at the early stage of chloroplast development and into malate at later stage of chloroplast development lead us to conclude that NADPH-dependent malate dehydrogenase activity is closely associated with chloroplast development, but activity of aspartate transaminase is not.

  • PDF

Carbon Dioxide Fixation and Light Source Effects of Spirulina platensis NIES 39 for LED Photobioreactor Design (Spirulina platensis NIES 39를 이용한 LED 광생물반응기에서의 이산화탄소 고정화와 광원 효과)

  • Kim, Ji-Youn;Joo, Hyun;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Optimal culture conditions of Spirulina platensis NIES 39 have been established using different types of light sources. Several types of photobioreactors were designed and the increase of biomass, the amount of $CO_2$, fixation and the production of chlorophyll content were studied. The result revealed that the input conditions of a 10 min period per 4 h at the condition of 5% $CO_2$ and 0.1 vvm, were excellent in the growth. The growth showing the maximum biomass accumulation is limited to 1.411 g/L when using the fluorescent bulb and the low powered surface mount device (SMD) type LEDs which were equipped-inside in the photobioreactor. However, the biomass exceeded up to 1.758 g/L level when a high powered red LED (color temperature : 12000 K) photobioreactor system was used. The $CO_2$ fixation speed and rate were increased. Although the total production of chlorophyll content undergoes a proportional increase in the biomass, the net content per dry cell weight (DCW) showed the higher production with a blue LED (color temperature : 7500 K) light than that of any other wavelengths. The carbon dioxide loss was marked as 0.15% of the inlet gas (5% $CO_2/Air$, v/v) at the maximum biomass culture condition.

Chlorophyll Fluorescence and $CO_2$ Fixation Capacity in Leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu (차나무, 동백나무, 귤나무 잎에서 엽록소 형광 및 $CO_2$ 흡수능의 비교 분석)

  • Oh, Soonja;Lee, Jin-Ho;Ko, Kwang-Sup;Koh, Seok Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • The chlorophyll fluorescence and photosynthetic $CO_2$ fixation capacity of leaves from three major crop trees found on Jeju Island, Camellia sinensis L., Camellia japonica L., and Citrus unshiu M., were analyzed. The photosynthetic $CO_2$ fixation rate of C. sinensis was similar to that of C. unshiu, and much higher than that of C. japonica which belongs to the same genus. Stomatal conductance in the three species was high at dawn and low during daytime. The intercellular $CO_2$ concentration of the three species was also high at dawn and decreased at midday. The transpiration rate showed an opposite trend from the intercellular $CO_2$ concentration. The photochemical efficiencies of PSII (Fv/Fm) in C. sinensis were slightly lower at midday compared to the level at dawn and/or dusk. The decline in Fv/Fm of C. sinensis at midday was much smaller than that of C. japonica. These results indicate that C. sinensis is better acclimated to high levels of radiation under natural conditions in late summer, although its PSII reaction center was inhibited by strong radiation. Of the chlorophyll fluorescence parameters in the species, the RC/CS decreased significantly while the ABS/RC, TRo/RC, ETo/RC, and DIo/RC increased significantly at midday in late summer. However, C. unshiu did not show significant changes in these values depending on the time of day. Among the three species, the daily $CO_2$ fixation rate in C. sinensis ($320.1mmol\;m^{-2}d^{-1}$) was the highest, followed by that of C. unshiu ($292.5mmol\;m^{-2}d^{-1}$) and C. japonica ($244.8mmol\;m^{-2}d^{-1}$). Thus, C. sinensis may be a valuable crop tree in terms of the uptake of $CO_2$ under natural field conditions.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Catalytic Application of Metal-Organic Frameworks for Chemical Fixation of CO2 into Cyclic Carbonate (CO2로부터 5원환 탄산염의 화학적 고정화 반응을 위한 Metal-Organic Frameworks의 촉매적 응용)

  • Ji, Hoon;Naveen, Kanagaraj;Kim, Dongwoo;Cho, Deug-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.258-266
    • /
    • 2020
  • The chemical fixation of CO2 into cyclic carbonates is considered to be one of the most promising way to alleviate global warming and produce fine chemicals. In this work, the catalytic applicability of metal-organic frameworks (MOFs) as porous crystalline materials for the synthesis of five-membered cyclic carbonate from CO2 and epoxides was reviewed. In addition, we have briefly classified the materials based on their different structural features and compositions. The studies revealed that MOFs exhibited good catalytic performance towards cyclic carbonate synthesis because of the synergistic effect between the acid sites of MOFs and nucleophile. Moreover, the effect of structure of designed MOFs and mechanism for the cycloaddition of CO2 were suggested.

Complications Associated with Monocortical Titanium Miniplate used in Rigid Fixation of Mandibular Fractures (하악골 골절의 견고고정에 사용된 monocortical titanium miniplate와 관련된 감염증에 관한 연구)

  • Kim, Young-Kyun;Yeo, Hwan-Ho;Lee, Hyo-Bin;Kim, Kyung-Weon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.4
    • /
    • pp.438-446
    • /
    • 1994
  • Eighty-nine patients with mandibular fracture were treated by open reduction and internal fixation using the monocortical titanium miniplate(Leibinger Co.). Postsurgical intermaxillary fixation was carried out for 2 to 18 days according to the patient's status. Seven patients developed infections postoperatively(7.9%). Five patients were favorably treated by incision and drainage and/or saucerization. But two patients were not controlled by early surgical intervention and should have been followed by plate removal, saucerization and secondary reconstruction including the bone graft. This article reports the postoperative infection associated with miniplate fixation of mandibular fractures and discuss the incidence, cause, treatment and prognosis with careful case analyses.

  • PDF